A Functional MRI Index of Spatial Context Effects in Vision


Coordination of brain activity, in the form of modulation of feedforward activity by stored information and expectations, occurs across domains of perception and cognition. A reliable and compelling example of this is size contrast in vision. This paper builds on a prior study to show that in healthy humans, the spread of activation in striate and extrastriate visual cortex during a context-modulated size perception task is dependent on the perceived size of the target image, not on the physical size of the retinal image. These data provide further evidence that early regions in visual cortex are modulated by top-down influences, and provide a framework for investigating visual context processing in psychiatric disorders where reduced sensitivity to visual contextual effects has been demonstrated in behavioral tasks.

Share and Cite:

Feigenson, K. , Hanson, C. , Papathomas, T. and Silverstein, S. (2015) A Functional MRI Index of Spatial Context Effects in Vision. Psychology, 6, 2145-2154. doi: 10.4236/psych.2015.616211.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Angelucci, A., Levitt, J. B., Walton, E. J. S., Hupe, J.-M., Bullier, J., & Lund, J. S. (2002). Circuits for Local and Global Signal Integration in Primary Visual Cortex. Journal of Neuroscience, 22, 8633-8646.
[2] Arnold, D. H., Birt, A., & Wallis, T. S. (2008). Perceived Size and Spatial Coding. Journal of Neuroscience, 28, 5954-5958.
[3] Carlson, T. A., Ritchie, J. B., Kriegeskorte, N., Durvasula, S., & Ma, J. (2014). Reaction Time for Object Categorization Is Predicted by Representational Distance. Journal of Cognitive Neuroscience, 26, 132-142.
[4] Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From Drugs to Deprivation: A Bayesian Framework for Understanding Models of Psychosis. Psychopharmacology, 206, 515-530.
[5] Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011). Glutamatergic Model Psychoses: Prediction Error, Learning, and Inference. Neuropsychopharmacology, 36, 294-315.
[6] Damaraju, E., Huang, Y. M., Barrett, L. F., & Pessoa, L. (2009). Affective Learning Enhances Activity and Functional Connectivity in Early Visual Cortex. Neuropsychologia, 47, 2480-2487.
[7] de Haas, B., Schwarzkopf, D. S., Anderson, E. J., & Rees, G. (2014). Perceptual Load Affects Spatial Tuning of Neuronal Populations in Human Early Visual Cortex. Current Biology, 24, R66-R67.
[8] Doherty, M. J., Campbell, N. M., Tsuji, H., & Phillips, W. A. (2010). The Ebbinghaus Illusion Deceives Adults but Not Children. Developmental Science, 13, 714-721.
[9] Doherty, M. J., Tsuji, H., & Phillips, W. A. (2008). The Context Sensitivity of Visual Size Perception Varies across Cultures. Perception, 37, 1426-1433.
[10] Fang, F., Boyaci, H., Kersten, D., & Murray, S. O. (2008). Attention-Dependent Representation of a Size Illusion in Human V1. Current Biology, 18, 1707-1712.
[11] Freeman, E., Sagi, D., & Driver, J. (2001). Lateral Interactions between Targets and Flankers in Low-Level Vision Depend on Attention to the Flankers. Nature Neuroscience, 4, 1032-1036.
[12] Friston, K., Rotshtein, P., Geng, J. J., Sterzer, P., & Henson, R. N. (2006). A Critique of Functional Localisers. Neuroimage, 30, 1077-1087.
[13] Gilbert, C., Ito, M., Kapadia, M., & Westheimer, G. (2000). Interactions between Attention, Context and Learning in Primary Visual Cortex. Vision Research, 40, 1217-1226.
[14] Hu, K., Padmala, S., & Pessoa, L. (2013). Interactions between Reward and Threat during Visual Processing. Neuropsychologia, 51, 1763-1772.
[15] Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage, 17, 825-841.
[16] Kaas, J. H. (2000). Why Is Brain Size So Important: Design Problems and Solutions as Neocortex Gets Bigger or Smaller. Brain and Mind, 1, 7-23.
[17] Kanai, R., & Rees, G. (2011). The Structural Basis of Inter-Individual Differences in Human Behaviour and Cognition. Nature Reviews Neuroscience, 12, 231-242.
[18] Keane, B. P., Silverstein, S. M., Wang, Y., & Papathomas, T. V. (2013). Reduced Depth Inversion Illusions in Schizophrenia Are State-Specific and Occur for Multiple Object Types and Viewing Conditions. Journal of Abnormal Psychology, 122, 506-512.
[19] Keil, A., Bradley, M. M., Ihssen, N., Heim, S., Vila, J., Guerra, P., & Lang, P. J. (2010). Defensive Engagement and Perceptual Enhancement. Neuropsychologia, 48, 3580-3584.
[20] Kret, M. E., & de Gelder, B. (2010). Social Context Influences Recognition of Bodily Expressions. Experimental Brain Research, 203, 169-180.
[21] Li, W., Piech, V., & Gilbert, C. D. (2008). Learning to Link Visual Contours. Neuron, 57, 442-451.
[22] Murray, S. O., Boyaci, H., & Kersten, D. (2006). The Representation of Perceived Angular Size in Human Primary Visual Cortex. Nature Neuroscience, 9, 429-434.
[23] Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). Object-Centered Shifts of Receptive Field Positions in Monkey Primary Visual Cortex. Current Biology, 24, 1653-1658.
[24] Open Science, C. (2015). PSYCHOLOGY. Estimating the Reproducibility of Psychological Science. Science, 349, Article ID: aac4716.
[25] Papathomas, T. V., & Bono, L. M. (2004). Experiments with a Hollow Mask and a Reverspective: Top-Down Influences in the Inversion Effect for 3-D Stimuli. Perception, 33, 1129-1138.
[26] Peirce, J. W. (2007). PsychoPy—Psychophysics Software in Python. Journal of Neuroscience Methods, 162, 8-13.
[27] Peirce, J. W. (2008). Generating Stimuli for Neuroscience Using PsychoPy. Front Neuroinform, 2, 10.
[28] Phillips, W. A., Clark, A., & Silverstein, S. M. (2015). On the Functions, Mechanisms, and Malfunctions of Intracortical Contextual Modulation. Neuroscience and Biobehavioral Reviews, 52, 1-20.
[29] Phillips, W. A., & Silverstein, S. M. (2003). Convergence of Biological and Psychological Perspectives on Cognitive Coordination in Schizophrenia. Behavioral and Brain Sciences, 26, 65-82; Discussion 82-137.
[30] Pooresmaeili, A., Arrighi, R., Biagi, L., & Morrone, M. C. (2013). Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion. Journal of Neuroscience, 33, 15999-16008.
[31] Reddy, L., & Kanwisher, N. (2006). Coding of Visual Objects in the Ventral Stream. Current Opinion in Neurobiology, 16, 408-414.
[32] Ritchie, J. B., Tovar, D. A., & Carlson, T. A. (2015). Emerging Object Representations in the Visual System Predict Reaction Times for Categorization. PLoS Computational Biology, 11, e1004316.
[33] Schwarzkopf, D. S., & Rees, G. (2013). Subjective Size Perception Depends on Central Visual Cortical Magnification in Human v1. PLoS ONE, 8, e60550.
[34] Schwarzkopf, D. S., Song, C., & Rees, G. (2011). The Surface Area of Human V1 Predicts the Subjective Experience of Object Size. Nature Neuroscience, 14, 28-30.
[35] Shipley, W., Gruber, C., Martin, T., & Klein, M. (2009). Shipley Institute of Living Scale-2. Los Angeles, CA: Western Psychological Services.
[36] Silverstein, S. M., Hatashita-Wong, M., Schenkel, L. S., Wilkniss, S., Kovacs, I., Feher, A. et al. (2006). Reduced Top-Down Influences in Contour Detection in Schizophrenia. Cognitive Neuropsychiatry, 11, 112-132.
[37] Silverstein, S. M., & Keane, B. P. (2009). Perceptual Organization in Schizophrenia: Plasticity and State-Related Change. Learning and Perception, 1, 229-261.
[38] Silverstein, S. M., & Keane, B. P. (2011). Perceptual Organization Impairment in Schizophrenia and Associated Brain Mechanisms: Review of Research from 2005 to 2010. Schizophrenia Bulletin, 37, 690-699.
[39] Silverstein, S. M., Keane, B. P., Wang, Y., Mikkilineni, D., Paterno, D., Papathomas, T. V., & Feigenson, K. (2013). Effects of Short-Term Inpatient Treatment on Sensitivity to a Size Contrast Illusion in First-Episode Psychosis and Multiple-Episode Schizophrenia. Frontiers in Psychology, 4, 1-11.
[40] Silverstein, S. M., Knight, R. A., Schwarzkopf, S. B., West, L. L., Osborn, L. M., & Kamin, D. (1996). Stimulus Configuration and Context Effects in Perceptual Organization in Schizophrenia. Journal of Abnormal Psychology, 105, 410-420.
[41] Smith, S. M. (2002). Fast Robust Automated Brain Extraction. Human Brain Mapping, 17, 143-155.
[42] Song, C., Schwarzkopf, D. S., & Rees, G. (2013). Variability in Visual Cortex Size Reflects Tradeoff between Local Orientation Sensitivity and Global Orientation Modulation. Nature Communications, 4, 2201.
[43] Tootell, R. B., Hadjikhani, N. K., Vanduffel, W., Liu, A. K., Mendola, J. D., Sereno, M. I., & Dale, A. M. (1998). Functional Analysis of Primary Visual Cortex (V1) in Humans. Proceedings of the National Academy of Sciences of the United States of America, 95, 811-817.
[44] Uhlhaas, P. J., Phillips, W. A., Mitchell, G., & Silverstein, S. M. (2006). Perceptual Grouping in Disorganized Schizophrenia. Psychiatry Research, 145, 105-117.
[45] Uhlhaas, P. J., Phillips, W. A., & Silverstein, S. M. (2005). The Course and Clinical Correlates of Dysfunctions in Visual Perceptual Organization in Schizophrenia during the Remission of Psychotic Symptoms. Schizophrenia Research, 75, 183-192.
[46] Vetter, P., & Newen, A. (2014). Varieties of Cognitive Penetration in Visual Perception. Consciousness and Cognition, 27, 62-75.
[47] Wilson, H. R., & Wilkinson, F. (2015). From Orientations to Objects: Configural Processing in the Ventral Stream. Journal of Vision, 15, 4.
[48] Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. Neuroimage, 14, 1370-1386.
[49] Zhang, N. R., & Von der Heydt, R. (2010). Analysis of the Context Integration Mechanisms Underlying Figure-Ground Organization in the Visual Cortex. Journal of Neuroscience, 30, 6482-6496.
[50] Zhu, M., & Rozell, C. J. (2013). Visual Nonclassical Receptive Field Effects Emerge from Sparse Coding in a Dynamical System. PLoS Computational Biology, 9, e1003191.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.