Negative Refractive Index Metamaterial Structure Using SRR by Incidenting the Light Horizontally

Abstract

Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incident. We apply horizontally incident input waves. A model of SRR is used to understand the behavior and its affects. We calculate the S-parameters using S-parameter analysis and the results for transmission, refractive index, permeability and permittivity of the structure is induced. The negative refractive index is found to be significantly dependent upon the width of the continuous wire as well as gap between resonators. Moreover, we study the effect of lattice constant on the electromagnetic response of the structure. It is expected that this work will provide useful information for design and fabrication of metamaterials with negative refractive index for in-plane applications.

Share and Cite:

Armghan, A. , Hu, X. , Yuan, S. and Xia, J. (2015) Negative Refractive Index Metamaterial Structure Using SRR by Incidenting the Light Horizontally. Journal of Electromagnetic Analysis and Applications, 7, 276-282. doi: 10.4236/jemaa.2015.711029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Veselago, V.G. (1968) The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi, 10, 509-514.
http://www.turpion.org/php/full/infoFT.phtml?journal_id=pu&paper_id=3699
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
[2] Pendry, J.B., Holden, A.J. Stewart, W.J. and Youngs, I. (1996) Extremely Low Frequency Plasmonics in Metallic Mesostructures. Physical Review Letters, 76, 4773-4776.
http://dx.doi.org/10.1103/PhysRevLett.76.4773
[3] Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. and Schultz, S. (2000) Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters, 84, 4184-4187.
http://dx.doi.org/10.1103/PhysRevLett.84.4184
[4] Shalaev, V.M., Cai, W., Chettiar, U., Yuan, H.-K., Sarychev, A.K., Drachev, V.P. and Kildishev, A.V. (2005) Negative Index of Refraction in Optical Metamaterials. Optics Letters, 30, 3356-3358.
[5] Smith, D.R., Vier, D.C., Koschny, T. and Soukoulis, C.M. (2005) Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Physical Review Letters, 71, 1-11.
[6] Zhang, S., Fan, W.J., Malloy, K.J., Brueck, S.R.J., Panoiu, N.C. and Osgood, R.M. (2006) Demonstration of Metal-Dielectric Negative-Index Metamaterials with Improved Performance at Optical Frequencies. Journal of the Optical Society of America, 23, 434-438.
http://dx.doi.org/10.1364/JOSAB.23.000434
[7] Dolling, G., Enkrich, C. and Wegener, M. (2006) Low-Loss Negative-Index Metamaterial at Telecommunication Wavelengths. Journal of the Optical Society of America, 31, 1800-1802.
[8] Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D. and Padilla, W.J. (2008) A Metamaterial Absorber for the Terahertz Regime: Design, Fabrication and Characterization. Optics Express, 16, 7181-7188.
http://dx.doi.org/10.1364/OE.16.007181
[9] Strikwerda, A.C., Fan, K., Tao, H., Pilon, D.V., Zhang, X. and Averitt, R.D. (2009) Comparison of Birefringent Electric Split-Ring Resonator and Meander Line Structures as Quarter-Wave Plates at Terahertz Frequencies. Optics Express, 17, 136-149.
http://dx.doi.org/10.1364/OE.17.000136
[10] Chen, H.T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J. and Averitt, R.D. (2006) Active Terahertz Metamaterial Devices. Nature, 444, 597-600.
http://dx.doi.org/10.1038/nature05343
[11] Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D. and Taylor, A.J. (2009) A Metamaterial Solid-State Terahertz Phase Modulator. Nature Photonics, 3, 148-151.
http://dx.doi.org/10.1038/nphoton.2009.3
[12] Chen, H.T., Palit, S., Tyler, T., Bingham, C.M., Zide, J.M.O., O’hara, J.F., et al. (2008) Hybrid Metamaterials Enable Fast Electrical Modulation of Freely Propagating Terahertz Waves. Applied Physics Letters, 93, Article ID: 091117.
http://dx.doi.org/10.1063/1.2978071
[13] Chen, H.T., O’Hara, J.F., Azad, A.K. and Taylor, A.J. (2008) Experimental Demonstration of Frequency-Agile Terahertz Metamaterials. Nature Photonics, 2, 295-298.
http://dx.doi.org/10.1038/nphoton.2008.52
[14] Lapine, M., Powell, D., Gorkunov, M., Shadrivov, I., Marqués, R. and Kivshar, Y. (2009) Structural Tunability in Metamaterials. Applied Physics Letters, 95, Article ID: 084105.
http://dx.doi.org/10.1063/1.3211920
[15] Tao, H., Strikwerda, A.C., Fan, K., Padilla, W.J., Zhang, X. and Averitt, R.D. (2009) Reconfigurable Terahertz Metamaterials. Physical Review Letters, 103, Article ID: 147401.
http://dx.doi.org/10.1103/PhysRevLett.103.147401
[16] Chen, X., Huifeng, M., Yang, X., Cheng, Q., Jiang, W.X. and Cui, T.J. (2009) X-Band High Directivity Lens Antenna Realized by Gradient Index Metamaterials. Proceedings of the Asia Pacific Microwave Conference, Singapore, 7-10 December 2009, 793-797.
http://dx.doi.org/10.1109/apmc.2009.5384269
[17] Lier, E. (2011) Metamaterial Lens Feed for Multiple Beam Antennas. United States Patent Application Publication, US 2011/0095953 A1.
https://www.google.com/patents/US8576132
[18] Navarro-Cia, M., Beruete, M., Falcone, F., Sorolla, M. and Campillo, I. (2010) Antenna Directivity Enhancement Using a Metamaterial Parabolic Lens. Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona, 12-16 April 2010, 1-3.
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5505200&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5505200
[19] Zhang, X. and Liu, Z.W. (2008) Superlenses to Overcome the Diffraction Limit. Nature Materials, 7, 435-441.
http://dx.doi.org/10.1038/nmat2141
[20] Tao, Y. and Wang, G. (2012) Conformal Hyperthermia of Superficial Tumor with Left-Handed Metamaterial Lens Applicator. IEEE Transactions on Biomedical Engineering, 59, 3525-3530.
http://dx.doi.org/10.1109/TBME.2012.2218108
[21] Zhang, S., Fan, W.J., Panoiu, N.C., Malloy, K.J., Osgood, R.M. and Brueck, S.R.J. (2005) Experimental Demonstration of Near-Infrared Negative-Index Metamaterials. Physical Review Letters, 95, Article ID: 137404.
http://dx.doi.org/10.1103/physrevlett.95.137404
[22] Dolling, G., Wegener, M., Soukoulis, C.M. and Linden, S. (2007) Negative-Index Metamaterial at 780 nm Wave Length. Journal of the Optical Society of America, 32, 53-55.
[23] Driscoll, T., Kim, H.T., Kim, B.J., Lee, Y.W., Jokerst, N.M., Palit, S., Smith, D.R., Di Ventra, M. and Basov, D.N. (2009) Memory Metamaterials. Science, 325, 1518-1521.
http://dx.doi.org/10.1126/science.1176580
[24] Vu, D.L., Pham, V.T., Do, T.V., Nguyen, T.T., Vu, T.T.T., Le, V.H. and Lee, Y.P. (2010) The Electromagnetic Response of Different Metamaterial Structures. Advances in Natural Sciences, 1, 1-7.
[25] Xu, C. and Dong, J. (2010) Negative Refractive Index in Non-Resonance Spectrum Area. COL, 8, 1067-1070.
[26] Zhong, M. (2014) Influence of Dielectric Layer on Negative Refractive Index and Transmission of Metal-Dielectric-Metal Sandwiched Metamaterials. COL, 12, Article ID: 041601.
[27] Guven, K., Caliskan, M.D. and Ozbay, E. (2006) Experimental Observation of Left-Handed Transmission in a Bilayer Metamaterial under Normal-to-Plane Propagation. Optics Express, 14, 8685-8693.
http://dx.doi.org/10.1364/OE.14.008685
[28] Lam, V.D., Kim, J.B., Lee, S.J. and Lee, Y.P. (2008) Left-Handed Behaviour of Combined and Fishnet Structures. Journal of Applied Physics, 103, Article ID: 033107.
http://dx.doi.org/10.1063/1.2841726

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.