// }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JMP> Vol.6 No.9, August 2015
Share This Article:
Cite This Paper >>

Non-Probabilistic Approach to the Time of Energy Emission in Small Quantum Systems

Abstract Full-Text HTML XML Download Download as PDF (Size:303KB) PP. 1277-1288
DOI: 10.4236/jmp.2015.69133    2,574 Downloads   2,848 Views   Citations
Author(s)    Leave a comment
Stanisƚaw Olszewski*

Affiliation(s)

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka, Warsaw, Poland.

ABSTRACT

The energy emitted by an electron in course of its transition between two quantum levels can be considered as a dissipated energy. This energy is obtained within a definite interval of time. The problem of the size of the time interval necessary for transitions is examined both on the ground of the quantum approach as well as classical electrodynamics. It is found that in fact the emission time approaches the time interval connected with acceleration of a classical velocity of the electron particle from one of its quantum levels to a neighbouring one.

KEYWORDS

Dissipated Energy and Time Intervals of the Quantum Transitions, Electron Acceleration in Simple Quantum Systems Considered as a Test of the Theory

Cite this paper

Olszewski, S. (2015) Non-Probabilistic Approach to the Time of Energy Emission in Small Quantum Systems. Journal of Modern Physics, 6, 1277-1288. doi: 10.4236/jmp.2015.69133.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Rubinowicz, A. (1968) Quantum Mechanics. Elsevier, Amsterdam.
[2] Loudon, R. (1991) The Quantum Theory of Light. 2nd Edition, Clarendon Press, Oxford.
[3] Planck, M. (1910) Acht Vorlesungen ueber Theoretische Physik. S. Hirzel, Leipzig.
[4] Einstein, A. (1917) Physikalische Zeitschrift, 18, 121.
[5] Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.
[6] Slater, J.C. (1968) Quantum Theory of the Atomic Structure. McGraw-Hill, New York.
[7] Weinberg, S. (2013) Lectures on Quantum Mechanics. Cambridge University Press, Cambridge.
[8] Heisenberg, W. (1927) Zeitschrift für Physik, 43, 172.
http://dx.doi.org/10.1007/BF01397280
[9] Landau, L. and Peierls, R. (1931) Zeitschrift für Physik, 69, 56.
http://dx.doi.org/10.1007/BF01391513
[10] Jammer, M. (1974) The Philosophy of Quantum Mechanics. Wiley, New York.
[11] Schommers, W. (1989) Space-Time and Quantum Phenomena. In: Schommers, W., Ed., Quantum Theory and Pictures of Reality, Springer-Verlag, Berlin, 217-277.
http://dx.doi.org/10.1007/978-3-642-95570-9_5
[12] Bunge, M. (1970) Canadian Journal of Physics, 48, 1410-1411.
http://dx.doi.org/10.1139/p70-172
[13] Allcock, G.R. (1959) Annals of Physics, 53, 253-285.
http://dx.doi.org/10.1016/0003-4916(69)90251-6
[14] Isaacs, A. (1990) Concise Dictionary of Physics. Oxford University Press, Oxford.
[15] Sommerfeld, A. (1931) Atombau und Spektrallinien: Volume 1. 5th Edition, Vieweg, Braunschweig.
[16] Eyring, H., Walter, J. and Kimball, G.E. (1957) Quantum Chemistry. Wiley, New York.
[17] MacDonald, A.H., Ed. (1989) Quantum Hall Effect: A Perspective. Kluwer, Milano.
http://dx.doi.org/10.1007/978-94-010-9709-3
[18] Olszewski, S. (2013) Quantum Matter, 2, 102-104.
http://dx.doi.org/10.1166/qm.2013.1030
[19] Olszewski, S. (2013) Journal of Modern Physics, 4, 14-20.
http://dx.doi.org/10.4236/jmp.2013.411A1003
[20] Olszewski, S. (2014) Quantum Matter, 3, 155-160.
http://dx.doi.org/10.1166/qm.2014.1108
[21] Lass, H. (1950) Vector and Tensor Analysis. McGraw-Hill, New York.
[22] Matveev, A.N. (1964) Electrodynamics and the Theory of Relativity. Izd. Wyzszaja Szkola, Moscow. (In Russian)
[23] Olszewski, S. Quantum Matter, in Press.
[24] Griffiths, D.J. (1999) Introduction to Electrodynamics. 3rd Edition, Prentice-Hall, Upper Saddle River.
[25] Slater, J.C. (1967) Quantum Theory of Molecules and Solids. Volume 3, McGraw-Hill, New York.
[26] Slater, J.C. (1963) and (1965) Quantum Theory of Molecules and Solids. Volume 1 and Volume 2, McGraw-Hill, New York.
[27] Bloch, F. (1928) Zeitschrift für Physik, 52, 555-600.
http://dx.doi.org/10.1007/BF01339455
[28] Mott, N.F. and Jones, H. (1958) Theory of the Properties of Metals and Alloys. Oxford University Press, Reprinted by Dover Publications, New York.

  
comments powered by Disqus
JMP Subscription
E-Mail Alert
JMP Most popular papers
Publication Ethics & OA Statement
JMP News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.