Phytochemical Study and Evaluation of Cytotoxicity, Antioxidant and Hypolipidemic Properties of Launaea taraxacifolia Leaves Extracts on Cell Lines HepG2 and PLB985

Abstract

Launaea taraxacifolia is a leafy vegetable of the family of Asteraceae (Compositae) found in several countries in West Africa including Ghana, Benin and Nigeria. The plant leaves are eaten either fresh as salad or cooked as sauces. They are also consumed as infusion to fight against several diseases including non-communicable diseases such as diabetes and hypertension. Several studies have been conducted in Ghana, Nigeria on the nutritional and medicinal values of this plant but no study has yet been conducted in Benin on the virtues of this plant. In this work we have achieved the phytochemical characterization and evaluated the cytotoxicity as well as hypolipidemic and anti-oxidant effects of the ethanol-aqueous extracts of Launaea taraxacifolia leaves. Cytotoxicity and hypolipidemic activities have been performed on HepG2 cells; the antioxidant effect has been performed on the PLB985 cells. The results showed that the ethanol-aqueous extracts of Launaea taraxacifolia leaves contained the following metabolites: catechic tannin, flavonoids, phenolic acids, mucilage and leucoanthocyanins. Only very high concentrations (>20 mg/ml) of leaves extracts are toxic for HepG2 cells. Launaea taraxacifolia leaves have significant antioxidant and hypolipidemic activities.

Share and Cite:

Koukoui, O. , Agbangnan, P. , Boucherie, S. , Yovo, M. , Nusse, O. , Combettes, L. and Sohounhloué, D. (2015) Phytochemical Study and Evaluation of Cytotoxicity, Antioxidant and Hypolipidemic Properties of Launaea taraxacifolia Leaves Extracts on Cell Lines HepG2 and PLB985. American Journal of Plant Sciences, 6, 1768-1779. doi: 10.4236/ajps.2015.611177.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Knobler, H., Schattner, A., Zhornicki, T., Malnick, S.D.H., Keter, D., Sokolovskaya, N. and Lurie, Y. (1999) Fatty Liver—An Additional and Treatable Feature of the Insulin Resistance Syndrome. Quarterly Journal of Medicine, 92, 73-79.
http://dx.doi.org/10.1093/qjmed/92.2.73
[2] Day, C.P. and James, O.F.W. (1998) Steatohepatitis: A Table of Two Hits? Gastroenterology, 114, 842-845.
http://dx.doi.org/10.1016/S0016-5085(98)70599-2
[3] Browning, J.D. and Horton, J.D. (2004) Molecular Mediators of Hepatic Steatosis and Liver Injury. The Journal of Clinical Investigation, 114, 147-152.
http://dx.doi.org/10.1172/JCI200422422
[4] Belfort, R., Mandarino, L., Kashyap, S., Wirfel, K., Pratipanawatr, T., Berria, R., DeFronzo, R.A. and Cusi, K. (2005) Dose-Response Effect of Elevated Plasma Free Fatty Acid on Insulin Signalling. Diabetes, 54, 1640-1648.
http://dx.doi.org/10.2337/diabetes.54.6.1640
[5] Higashi, Y., Sasaki, S., Nagakawa, K., Matsuura, H., Oshima, T. and Chayama, K. (2002) Endothelial Function and Oxydative Stress in Renovascular Hypertension. New England Journal of Medicine, 346, 1954-1962.
http://dx.doi.org/10.1056/NEJMoa013591
[6] Heistad, D.D. (2006) Oxidative Stress and Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 689-695.
http://dx.doi.org/10.1161/01.ATV.0000203525.62147.28
[7] Madamanchi, N.R., Vendrov, A. and Runge, M.S. (2005) Oxidative Stress and Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 29-38.
[8] Adebisi, A.A. (2004) Launaea taraxacifolia (Willd.) Amin ex C. Jeffrey. In: Grubben, G.J.H. and Denton, O.A., Eds., PROTA 2: Vegetables/Légumes.
[9] Dansi, A., Vodouhè, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., Loko, L., Dossou-Aminon, I. and Akpagana, K. (2012) Diversity of the Neglected and Underutilized Crop Species of Importance in Benin. Scientific World Journal, 2012, 932-947.
http://dx.doi.org/10.1100/2012/932947
[10] Dansi, A., Adjatin, A., Adoukonou-Sagbadja, H., Faladé, V., Yedomonhan, H., Odou, D. and Dossou, B. (2008) Traditional Leafy Vegetables and Their Use in the Benin Republic. Genetic Resources and Crop Evolution, 55, 1239-1256.
http://dx.doi.org/10.1007/s10722-008-9324-z
[11] Obi, R.K. (2011) Antiviral Potential of Vegetables: Can They Be Cost-Effective Agents for Human Disease? Nutrients, Dietary Supplements, and Nutriceuticals, 5, 259-276.
http://dx.doi.org/10.1007/978-1-60761-308-4_16
[12] Wallace, P.A., Marfo, E.K., Timpoh, G. and Plahar, W.A. (1996) Nutritional Value and Cholesterol-Lowering Effect of Wild Lettuce (Launaea taraxacifolia) Leaf Protein. Book of Abstracts, Ghana Science Association, Cape Coast, 14.
[13] Arawande, J.O., Amoo, I.A. and Lajide, L. (2013) Chemical and Phytochemical Composition of Wild Lettuce Launaea taraxacifolia. Journal of Applied Phytotechnology in Environmental Sanitation, 2, 25-30.
[14] Adinortey, M.B., Sarfo, J.K., Quayson, E.T., Weremfo, A., Adinortey, C.A., Ekloh, W. and Ocran, J. (2012) Phytochemical Screening, Proximate and Mineral Composition of Launaea taraxacifolia Leaves. Research Journal of Medicinal Plants, 6, 171-179.
[15] Randerath, K. (1971) Chromatographie sur Couches Minces. Edition Gauthier-Villars, Paris, 337-339.
[16] Rizk, A.M. (1982) Constituents of Plants Growing in Qatar. Fitoterapia, 52, 35-42.
[17] Dohou, N., Yamni, K., Tahrouch, S., Idrissi Hassani, L.M., Badoc, A. and Gmira, N. (2003) Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bulletin de la Société de pharmacie de Bordeaux, 142, 61- 78.
[18] Ribéreau-Gayon, J. and Peynaud, E. (1968) Les composés phénoliques des végétaux, Traité d’oenologie. Edition Dunod, Paris.
[19] Bruneton, J. (1993) Pharmacognosie, phytochimie, plantes médicinales. 2e edition, Tec et Doc., Lavoisier, Paris, 915 p.
[20] Bruneton, J. (1999) Pharmacognosy, Phytochemistry, Medicinal Plants. Lavoisier Technique & Documentation, Paris. (In French)
[21] Traore, F. (2010) Proposition de formulation d’un sirop antipaludique à base de argemon emexican papaveraceae. Médecine, de Pharmacie et d’Odonto Stomatologie du Mali, 94 p.
[22] Singleton, V.I. and Lamuela-Raventos, R.M. (2012) Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Method in Enzymology, 299, 15.
[23] Siddhuraju, P., Mohan, P.S. and Becker, K. (2007) Studies on the Antioxidant Activity of Indian Laburnum (Cassia fistula L.), a Preliminary Assessment of Crude Extracts from Stem Bark, Leaves, Flowers and Fruit Pulp. Journal of Food Chemistry, 9, 61-67.
[24] Bahorun, T., Grinier, B., Trotin, T., Brunet, G., Pin, T., Lunck, M., Vasseur, J., Cazi, M., Cazin, C. and Pinkas, M. (1996) Oxygen Species Scavenging Activity of Phenolic Extracts from Hawthorn Fresh Plant Organs and Pharmaceutical Preparations. Arzneimittel-Forsching, 46, 1086-1089.
[25] Agbangnan, C.P., Tachon, C., Bonin, C., Chrostowka, A., Fouquet, E. and Sohounhloue, D.K.C. (2012) Phytochemical Study of a Tinctorial Plant of Benin Traditional Pharmacopoeia: The Red Sorghum (Sorghum caudatum) of Benin. Scientific Study & Research, 13, 121-135.
[26] Xu, B.J. and Chang, S.K.C. (2007) Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. Journal of Food Science, 72, 160-161.
http://dx.doi.org/10.1111/j.1750-3841.2006.00260.x
[27] Kent, A.T., Mickael, B.L., Louis Jr., H. and Thomas, A.R. (1987) Characterization of a New Human Diploid Myeloid Leukemia Cell Line (PLB985) With Granulocytic and Monocytic Differentiating Capacity. Blood, 70, 372-378.
[28] Tlili, A., Erard, M., Faure, M.-C., Baudin, X., Piolot, T., Dupré-Crochet, S. and Nüsse, O. (2012) Stable Accumulation of p67phox at the Phagosomal Membrane and ROS Production within the Phagosome. Journal of Leukocyte Biology, 91, 83-95.
http://dx.doi.org/10.1189/jlb.1210701
[29] Mosmann, T. (1983) Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxity Assays. Journal of Immunological Methods, 65, 55-63.
http://dx.doi.org/10.1016/0022-1759(83)90303-4
[30] Said, O., Saad, B., Fulder, S., Amin, R., Kassis, E. and Khalil, K. (2009) Hypolipidemic Activity of Extracts from Eriobotrya japonica and Olea europaea, Traditionally Used in the Greco-Arab Medicine in Maintaining Healthy Fat Levels in Blood. The Open Complementary Medicine Journal, 1, 84-91.
[31] Carson, F.L. (1997) Histotechnology: A Self-Instructional Text. 2nd Edition, American Society for Clinical Pathology Press, Chicago, 160.
[32] Cui, W., Chen, S.L. and Hu, K.Q. (2010) Quantification and Mechanisms of Oleic Acid-Induced Steatosis in HepG2 Cells. American Journal of Translational Research, 2, 95-104.
[33] Helen, L., Per, F., Laila, K. and Claes, D. (1995) Phorbol Myristate Acetate-Induced NADPH Oxidase Activity in Human Neutrophils: Only Half the Story Has Been Told. Journal of Leukocyte Biology, 59, 270-279.
[34] Natacha, S., Jean-Pol, F., Marie-Jose, S., Marie, E., Rachel, B., Christiane, T., Isabelle, D. and Oliver, N. (2007) Potent Inhibition of Store-Operated Ca2 Influx and Superoxide Production in HL60 Cells and Polymorphonuclear Neutrophils by the Pyrazole Derivative BTP2. Journal of Leukocyte Biology, 81, 1054-1064.
[35] Popovici, C., Saykova, I. and Tylkowski, B. (2009) Evaluation de l’activité antioxydante des composés phénoliques par la réactivité avec le radical libre DPPH. Revue de Génie Industriel, 4, 25-39.
[36] Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jime′nez, L. (2004) Polyphenols: Food Sources and Bioavailability. American Journal of Clinical Nutrition, 79, 727-747.
[37] Berridge, M.V., Herst, P.M. and Tan, A.S. (2005) Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnology Annual Review, 11, 127-152.
http://dx.doi.org/10.1016/S1387-2656(05)11004-7
[38] Berridge, M.V. and Tan, A.S. (1993) Characterization of the Cellular Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Archives of Biochemistry and Biophysics, 303, 474-482.
http://dx.doi.org/10.1006/abbi.1993.1311
[39] Kuhnau, J. (1976) The Flavonoids. A Class of Semi-Essential Food Components: Their Role in Human Nutrition. World Review of Nutrition and Dietetics, 24, 117-191.
http://dx.doi.org/10.1159/000399407
[40] Radtke, J., Linseisen, J. and Wolfram, G. (1998) Phenolic Acid Intake of Adults in a Bavarian Subgroup of the National Food Consumption Survey. Zeitschrift für Ernährungswissenschaft, 37, 190-197.
http://dx.doi.org/10.1007/s003940050016
[41] Graefe, E.U., Wittig, J., Mueller, S., Riethling, A.K., Uehleke, B., Drewelow, B., et al. (2001) Pharmacokinetics and Bioavailability of Quercetin Glycosides in Humans. The Journal of Clinical Pharmacology, 41, 492-499.
http://dx.doi.org/10.1177/00912700122010366
[42] Chang, H.C., Churchwell, M.I., Delclos, K.B., Newbold, R.R. and Doerge, D.R. (2000) Mass Spectrometric Determination of Genistein Tissue Distribution in Diet-Exposed Sprague-Dawley Rats. Journal of Nutrition, 130, 1963-1970.
[43] Kim, S.B., Lee, M.J. and Hong, J.I. (2000) Plasma and Tissue Levels of Tea Catechins in Rats and Mice during Chronic Consumption of Green Tea Polyphenols. Nutrition and Cancer, 37, 41-48.
http://dx.doi.org/10.1207/S15327914NC3701_5
[44] Schramm, D.D., Collins, H.E. and German, J.B. (1999) Flavonoid Transport by Mammalian Endothelial Cells. The Journal of Nutritional Biochemistry, 10, 193-197.
http://dx.doi.org/10.1016/S0955-2863(98)00104-1
[45] Maubach, J., Bracke, M.E., Heyerick, A., Depypere, H.T., Serreyn, R.F., Mareel, M.M. and De Keukeleire, D. (2003) Quantitation of Soy-Derived Phytoestrogens in Human Breast Tissue and Biological Fluids by High-Performance Liquid Chromatography. Journal of Chromatography B, 784, 137-144.
http://dx.doi.org/10.1016/S1570-0232(02)00789-4
[46] Navab, M., Berliner, J.A., Watson, A.D., Hama, S.Y., Territo, M.C., Lusis, A.J., Shih, D.M., Van Lenten, B.J., Frank, J.S., Demer, L.L., Edwards, P.A. and Fogelman, A.M. (1996) The Yin and Yang of Oxidation in the Development of the Fatty Streak: A Review Based on the 1994 George Lyman Duff Memorial Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 831-842.
http://dx.doi.org/10.1161/01.ATV.16.7.831
[47] Wassmann, S., Laufs, U., Baumer, A.T., Muller, K., Konkol, C., Sauer, H., Bohm, M. and Nickenig, G. (2001) Inhibition of Geranyl Geranylation Reduces Angio Tensin II-Mediated Free Radical Production in Vascular Smooth Muscle Cells: Involvement of Angiotensin AT1 Receptor Expression and Rac1 GTPase. Molecular Pharmacology, 59, 646-654.
[48] Touyz, R.M., Yao, G. and Schiffrin, E.L. (2003) c-Src Induces Phosphorylation and Translocation of p47phox: Role in Superoxide Generation by Angiotensin II in Human Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 981-987.
http://dx.doi.org/10.1161/01.ATV.0000069236.27911.68
[49] Moon, J.H., Tsushida, T., Nakahara, K. and Terao, J. (2001) Identification of Quercetin 3-O-β-D-Glucuronide as an Antioxidative Metabolite in Rat Plasma after Oral Administration of Quercetin. Free Radical Biology and Medicine, 30, 1274-1285.
http://dx.doi.org/10.1016/S0891-5849(01)00522-6
[50] Cren-Olive, C.C., Teissier, E., Duriez, P. and Rolando, C. (2003) Effect of Catechin O-Methylated Metabolites and Analogues on Human LDL Oxidation. Free Radical Biology and Medicine, 34, 850-855.
http://dx.doi.org/10.1016/S0891-5849(02)01433-8
[51] Koga, T. and Meydani, M. (2001) Effect of Plasma Metabolites of (+)-Catechin and Quercetin Onmonocyte Adhesion to Human Aortic Endothelial Cells. American Journal of Clinical Nutrition, 73, 941-948.
[52] Yoshizumi, M., Tsuchiya, K. and Suzaki, Y. (2002) Quercetin Glucuronide Prevents VSMC Hypertrophy by Angiotensin II via the Inhibition of JNK and AP-1 Signaling Pathway. Biochemical and Biophysical Research Communications, 293, 1458-1465.
http://dx.doi.org/10.1016/S0006-291X(02)00407-2
[53] Janorkar, A.V., King, K.R., Megeed, Z. and Yarmush, M.L. (2009) Development of an in Vitro Cell Culture Model of Hepatic Steatosis Using Hepatocyte-Derived Reporter Cells. Biotechnology and Bioengineering, 102, 1466-1474.
http://dx.doi.org/10.1002/bit.22191
[54] Evereklioglu, C., Turkoz, Y., Calis, M., Duygulu, F. and Karabulut, A.B. (2004) Tumor Necrosis Factor Alpha, Lipid Peroxidation and NO Are Increased and Associated with Free Radical Scavenging Enzymes in Patients with Weill-Marchesani Syndrome. Mediators of Inflammation, 13, 165-170.
http://dx.doi.org/10.1080/09511920410001713547

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.