Historical Evolution of the Trophic and Limnological Relationships in the Itaipu Reservoir: Top-Down and Bottom-Up Effects upon Fish Production
Rinaldo Antonio Ribeiro Filho1, Miguel Petrere Junior2,3, Ângelo Antonio Agostinho4, Simone Friderigi Benassi5, Julia Myriam de Almeida Pereira1, Edson Kiyoshi Okada4
1Curso de Engenharia de Pesca, Universidade Estadual Paulista (Unesp), Registro, Brazil.
2Programa de Pós Graduação em Diversidade Bilógica e Conservação, Universidade Federal de São Carlos (UFSCar), Sorocaba, Brazil.
3Programa de Pós Graduação em Sustentabilidade em Ecossistemas Marinhos e Costeiros, UNISANTA, Santos, Brazil.
4Departamento de Biologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá, Paraná, Brazil.
5Divisão de Reservatório (MARR.CD), Itaipu Binacional, Foz do Iguaçu, Brazil.
DOI: 10.4236/abb.2015.66039   PDF    HTML   XML   3,674 Downloads   4,669 Views   Citations


Many experimental studies have contributed to the development of the theory of trophic chains in lacustrine habitats. They have revealed the important role played by fish, a subject that has been mostly ignored by limnological studies for the past few decades. Most of these studies were developed in Europe and in the United States. The general applicability of this theory has not yet been tested in subtropical and tropical habitats. In spite of controversies, the bottom-up: top-down trophic cascade hypotheses are the most adopted conceptual models. In this context, we examined if these hypotheses may be corroborated by data from the subtropical Itaipu Reservoir. A negative effect was verified between water transparency and total suspended solids. The detritivorous fish exerted a controlling effect on chlorophyll-a concentrations. Bottom-up effects were detected in four trophic levels, and top-down was detected in just one trophic level. The limnological variates influenced the chlorophyll-a concentration, which indicated that the lnTKN plus the effect of the quarter and the reservoir zone (and their interaction) were important.

Share and Cite:

Ribeiro Filho, R. , Junior, M. , Agostinho, Â. , Benassi, S. , Almeida Pereira, J. and Okada, E. (2015) Historical Evolution of the Trophic and Limnological Relationships in the Itaipu Reservoir: Top-Down and Bottom-Up Effects upon Fish Production. Advances in Bioscience and Biotechnology, 6, 390-407. doi: 10.4236/abb.2015.66039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Odum, E.P. (1988) Ecologia. Guanabara, Koogan AS, Rio de Janeiro.
[2] Wetzel, R.G. (1993) Limnologia. Fundação Calouste Gulbenkian.
[3] Calijuri, M.C., Tundisi, J.G., Henry, R., Ibañez, M.S.R., Matsumura-Tundisi, T. and Rocha, O. (1997) Changes in Light Attenuation in Fifteen Lakes and Its Relationship with Chlorophyll and Particulate Material, during Summer and Winter. In: Saijo, Y. and Tundisi, J.G., Eds., Limnological Studies in Rio Doce Valley Lakes, Brazil, Nagoya University, Nagoya.
[4] Henry, R. (1990) Amônia ou fosfato como agente estimulador do crescimento do fitoplancton na represa de Jurumurim (Rio Paranapanema, SP)? Revista Brasileira de Biologia, 50, 883-892.
[5] Overbeck, J. (2000) Conceitos de Ecossistema. In: Jørgensenand, S.E. and Vollenweider, R.A., Eds., Diretrizes para o Gerenciamento de Lagos. Princípios para o Gerenciamento de Lagos.
[6] Hrbácek, J., Dvoráková, M., Korínek, V. and Procházková, L. (1961) Demonstration of the Effect of the Fish Stock on the Species Composition of Zooplankton and the Intensity of the Whole Plankton Association. Verhandlungen des Internationalen Verein Limnologie, 14, 192-195.
[7] Shapiro, J., Lamarra, V. and Lynch, M. (1975) Biomanipulation, an Ecosystem Approach to Lake Restoration. In: Brezonik, P. and Fox, F., Eds., Proceedings of the Symposium Water Quality Management through Biological Control, Department of Environmental Engineering Sciences, University of Florida, Gainesville, 85-96.
[8] Carpenter, S.R. and Kitchell, J.F. (1993) The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.
[9] Demelo, R., France, R. and McQueen, J.D. (1992) Biomanipulation: Hit or Myth? Limnology and Oceanography, 37, 192-207.
[10] McQueen, J.D., Post, J.R. and Mills, E.L. (1986) Trophic Relationships in Freshwater Pelagic Ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1571-1581.
[11] Carpenter, S.R., Kitchell, J.F. and Hodgson, J.R. (1985) Cascading Trophic Interactions and Lake Productivity Fish: Predation and Herbivory Can Regulate Ecosystems. BioScience, 35, 634-639.
[12] Brett, M.T. and Goldman, C.R. (1996) A Meta-Analysis of the Fresh-Water Trophic Cascade. Proceedings of the National Academy of Sciences of the United States of America, 93, 7723-7726.
[13] Brett, M.T. and Goldman, C.R. (1997) Consumers versus Resource Control in Freshwater Pelagic Food Webs. Science, 275, 384-386.
[14] Elser, J.J. and Goldman, C.R. (1991) Zooplankton Effects on Phytoplankton in Lakes of Contrasting Trophic Status. Limnology and Oceanography, 36, 64-90.
[15] Lazzaro, X.T. (1991) Feeding Convergence in South American and African Zooplaktivorous Cichlids Geophagus brasiliensis and Tilapia rendalli. Environmental Biology of Fishes, 31, 283-293.
[16] Jeppesen, E., Jensen, J.P., Sondergaard, M., Lauridsen, T., Pedersen, J. and Jensen, L. (1997) Top-Down Control in Freshwater Lakes: The Role of Nutrient State, Submerged Macrophytes and Water Depth. Hydrobiologia, 342/343, 151-164.
[17] McQueen, D.J. (1990) Manipulating Lake Community Structure: Where Do We Go from Here? Freshwater Biology, 23, 613-620.
[18] Hambright, K.D. (1994) Morphological Constraints in the Piscivore-Planktivore Interaction: Implications for the Trophic Cascade Hypothesis. Limnology and Oceanography, 39, 897-912.
[19] McQueen, D.J., France, R. and Kraft, C. (1992) Confounded Impacts of Planktivorus Fish on Freshwater Biomanipulations. Archiv für Hydrobiologie, 125, 1-24.
[20] Lazzaro, X.T. (1997) Do the Trophic Cascade Hypothesis and Classical Biomanipulation Approaches Apply to Tropical Lakes/Reservoirs? Verhandlungen des Internationalen Verein Limnologie, 26, 719-730.
[21] Starling, F.L.R.M. (1998) Development of Biomanipulation Strategies for the Remediation of Eutrophication Problem in a Urban Reservoir—Lago Paranoá. Ph.D. Thesis, University of Stirling, Escócia.
[22] Perrow, M., Meijer, M.L., Dawidowicz, P. and Coops, H. (1997) Biomanipulation in Shallow Lakes: State of the Art. Hydrobiologia, 342/343, 355-365.
[23] Persson, A., Andersson, G., Hamrin, S.F. and Johansson, L. (1988) Predator Regulation and Primary Production along the Productive Gradient of Temperate Lake Ecosystems. In: Carpenter, S.R. Ed., Complex Interactions in Lake Communities, Springer-Verlag, Berlin, 45-65.
[24] Prejs, A., Pijanowska, J., Koperski, P., Martyniak, A., Borón, S. and Hliwa, P. (1997) Food-Web Manipulation in a Small, Eutrophic Lake Wirbel, Poland: Long-Term Changes in Fish Biomass and Basic Measures of Water Quality. A Case Study. Hydrobiologia, 342/343, 383-386.
[25] Hairston Jr., N.G. and Hairston Sr., N.G. (1997) Does Food Web Complexity Eliminate Trophic-Level Dynamics? American Naturalist, 149, 1001-1007.
[26] Mehner, T., Hölker, F. and Kasprzak, P. (2005) Spatial and Temporal Heterogeneity of Trophic Variables in a Deep Lake as Reflected by Repeated Singular Samplings. OIKOS, 108, 401-409.
[27] Quirós, R. and Boveri, M.B. (1999) Fish Effects on Reservoir Trophic Relationships. In: Tundisi, J.G. and Straskraba, M., Ed., Theoretical Reservoir Ecology and Its Applications, IIE, BAC, Backhuys Publishers, Leiden, 529-564.
[28] Ribeiro-Filho, R.A. (2006) Relações tróficas e limnológicas no reservatório de Itaipu: Uma análise do impacto da biomassa pesqueira nas comunidades planctônicas. Ph.D. Thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo.
[29] Filho, R.A.R., de Almeida Pereira, J.M., Júnior, M.P. and Benassi, S.F. (2013) Eutrophication Indexes Used as Fish Production Parameters in the Itaipu Reservoir (Brazil). Journal of Environmental Protection, 4, 151-178.
[30] Garcia, S.M., Kerbi, A., Aliaume, C., Do Chi, T. and Lasserre, G. (2003) The Ecosystem Approach to Fisheries. FAO Fisheries Technical Paper, 43, FAO, Rome.
[31] Agostinho, A.A., Pelicice, F.M. and Gomes, L.C. (2008) Dams and the Fish Fauna of the Neotropical Region: Impacts and Management Related to Diversity and Fisheries. Brazilian Journal of Biology, 68, 1119-1132.
[32] Thornton, K.W., Kennedy, R.H., Carroll, J.H., Walker, W.W., Gunkel, R.C. and Ashby, S. (1981) Reservoir Sedimentation and Water Quality—An Heuristic Model. In: Stefan, H.G., Ed., Proceedings of the Symposium on Surface Water Impoundments, American Society of Civil Engineers, Minneapolis, 654-661.
[33] Pagioro, T.A. and Thomaz, S.M. (2002) Longitudinal Patterns of Sedimentation in a Deep, Monomictic Subtropical Reservoir (Itaipu, Brazil-Paraguay). Archiv für Hydrobiologie, 154, 515-528.
[34] Hahn, N.S., Agostinho, A.A., Gomes, L.C. and Bini, L.M. (1998) Estrutura trófica da ictiofauna do reservatório de Itaipu (Paraná—Brasil) nos primeiros anos de sua formação. Interciência, 23, 299-305.
[35] Lazzaro, X.T., Bouvy, M., Ribeiro-Filho, R.A., Oliveira, V.S., Sales, L.T., Vasconcelos, A.R.M. and Mata, M.R. (2003) Do Fish Regulate Phytoplankton in Shallow Eutrophic Northeast Brazilian Reservoirs? Freshwater Biology, 48, 649-668.
[36] Srivastava, M.S. and Cartes, E.M. (1983) Introduction to Applied Multivariate Statistics. Elsevier, Amsterdam.
[37] Morrison, D.F. (1990) Multivariate Statistical Methods. 3rd Edition, McGraw-Hill, New York.
[38] Everitt, B.S. and Dunn, G. (1995) Applied Multivariate Data Analysis. Edward Arnold, London.
[39] Tabachnick, B.G. and Fidell, L.S. (2001) Using Multivariate Statistics. 4th Edition, Allyn and Bacon, Boston.
[40] Petrere Júnior, M. (1978) Pesca e esforço no Estado do Amazonas. I. Esforço e captura por unidade de esforço. Acta Amazonica, 8, 439-454.
[41] Petrere Júnior, M. (1983) Yield per recruit of the Tambaqui, Colossoma macropomum Cuvier, in the Amazonas State. Journal of Fish Biology, 22, 133-144.
[42] Petrere Júnior, M. (1986) Amazon Fisheries. II—Variations in the Relative Abundance of Tucunaré (Cichlaocellaris, C. temensis) Based on Catch and Effort Data of the Trident Fisheries. Amazoniana, 10, 1-13.
[43] Kotas, J.E. (2004) Dinamica de populações e pesca do tubarõo martelo Sphyrnalewini (Grffith & Smith, 1834) capturado no mar territorial e Zona Econômica Exclusiva do sudestesul do Brasil. Ph.D. Thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo.
[44] Huitema, B.E. (1980) The Analysis of Covariance and Alternatives. John Wiley & Sons, Hoboken.
[45] Benndorf, J., Böing, W., Koop, J. and Neubauer, I. (2002) Top-Down Control of Phytoplankton: The Role of Time Scale, Lake Depth and Trophic State. Freshwater Biology, 47, 2282-2295.
[46] Scasso, F., Mazzeo, N., Gorga, J., Kruk, J., Lacerot, G., Clemente, J., Fabian, D. and Bonilla, S. (2001) Limnological Changes in a Sub-Tropical Shallow Hypertrophic Lake during Its Restoration: Two Years of a Whole-Lake Experiment. Aquatic Conservation: Marine and Freshwater Ecosystems, 11, 31-44.
[47] Hasan, M.R., Mondal, M.A.W., Miah, M.I. and Kibria, M.G. (2001) Water Quality Study of Some Selected Oxbow Lakes with Special Emphasis on Chlorophyll-a. In: De Silva, S.S., Ed., Reservoir and Culture-Based Management Fisheries: Biology and Management, ACIAR, Canberra, 126-136.
[48] Rejas, D., Clerck, L., Auwerkerken, J., Tak, P. and Meester, L. (2005) Plankton Dynamics in a Tropical Floodplain Lake: Fish, Nutrients, and the Relative Importance of Bottom-Up and Top-Down Control. Freshwater Biology, 50, 52-69.
[49] Jeppesen, E., Søndergaard, M., Mazzeo, N., Meerhoff, M., Branco, C.C., Huszar, V. and Scasso, F. (2005) Lake Restoration and Biomanipulation in Temperate Lakes: Relevance for Subtropical and Tropical Lakes. In: Reddy, M.V. and Moss, B., Eds., Restoration and Management of Tropical Eutrophic Lakes, Science Publishers, Enfield, 341-359.
[50] Pelicice, F.M., Abujanra, F., Fugi, R., Latini, J.D., Gomes, L.C. and Agostinho, A.A. (2005) A Piscivoria Controlando a Produtividade em Reservatórios: Explorando o Mecanismo Top Down. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, LC., Eds., Biocenose em Reservatórios: Padrões espaciais e temporais, Rima, São Carlos, 293-302.
[51] Paiva, M.P., Petrere Jr., M., Petenate, A.J., Nepomuceno, F.H. and Vasconcelos, E.A. (1994) Relationship between the Number of Predatory Fish Species and Fish Yield in Large Northeastern Brazilian Reservoirs. In: Cowx, I.G., Ed., Rehabilitation of Freshwater Fisheries, Fishing News Books, Blackwell, Oxford, 120-129.
[52] Vanni, M.J. and Findlay, D.L. (1990) Trophic Cascades and Phytoplankton Community Structure. Ecology, 71, 921-937.
[53] Arcifa, M., Starling, F.L.R.M., Sipaúba-Tavares, L.H. and Lazzaro, X.T. (1995) Experimental Limnology. In: Tundisi, J.G., Bicudo, C.E.M. and Tundisi, T.M., Eds., Limnology in Brazil, ABC/SBL, Rio de Janeiro, 257-282.
[54] Roche, K.F. and Rocha, O. (2005) Aspectos de predação por peixes em lagos e represas, com enfoque na planctivoria. In: Roche, K.F. and Rocha, O., Eds., Ecologia trófica de peixes com ênfase na planctivoria nos ambientes lênticos de água doce no Brasil, Rima, São Carlos, 1-24.
[55] Drenner, R.W., Smith, J.D. and Threlkeld, S.T. (1996) Lake Trophic State and the Limnological Effects of Omnivorus Fish. Hydrobiologia, 319, 213-223.
[56] Hambright, K.D., Drenner, R.W. and McComas, S.R. (1991) Gape-Limited Piscivorous, Planktivores Size Refuges, and the Trophic Cascade Hypothesis. Archiv für Hydrobiologie, 121, 389-404.
[57] Hambright, K.D. (1994) Morphological Constraints in the Piscivore-Planktivore Interaction: Implications for the Trophic Cascade Hypothesis. Limnology and Oceanography, 39, 897-912.
[58] Lansac-Tôha, A., Bonecker, C.C. and Velho, L.F.M. (2005) Estrutura da Comunidade Zooplanctônica em Reservatórios. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C., Eds., Biocenoses em Reservatórios: Padrões espaciais e temporais, Rima, São Carlos, 115-136.
[59] Piana, P.A., Da Luz, K.D.G., Pelicice, F.M., Costa, R.S., Gomes, L.C. and Agostinho, A.A. (2005) Predição e Mecanismos Reguladores da Biomassa de Peixes em Reservatórios. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C., Eds., Biocenose em Reservatórios—Padrões espaciais e temporais, Rima, São Carlos, 303-310.
[60] Abujanra, F. and Agostinho, A.A. (2002) Dieta de Hypophthalmus edentatus (Spix. 1829) (Osteichthyes, Hypophthalmidae) e variaççes de seu estoque noreservatório de Itaipu. Acta Scientiarum Biological Sciences, 24, 401-410.
[61] Baca, R.M. and Drenner, R.W. (1995) Do the Effects of Piscivorous Largemouth Bass Cascade to the Plankton? Hydrobiologia, 316, 139-151.
[62] Persson, A. (1997) Phosphorus Release by Fish in Relation to External and Internal Load in a Eutrophic Lake. Limnology and Oceanography, 42, 577-583.
[63] Pereira, J.M.A. and Ribeiro-Filho, R.A. (2004) Efeitos da excreção de tilápias (Tilapiarendali e Oreochromisniloticus) em reservatórios e viveiros de piscicultura. In: Espíndola, E.L.G. and Wendland, E., Eds., Bacia Hidrográfica: Diversas abordagens em pesquisa, Rima, São Carlos, 99-109.
[64] Brabrand, A., Faafeng, B. and Nilssen, J.P.M. (1990) Relative Importance of Phosphorus Supply to Phytoplankton Production: Fish Excretion versus External Loading. Canadian Journal of Fisheries and Aquatic Sciences, 47, 364-372. http://dx.doi.org/10.1139/f90-038
[65] Stein, R.A., Devries, D.R. and Dettmers, J.M. (1995) Food-Web Regulation by a Planktivore: Exploring the Generality of the Trophic Cascade Hypothesis. Canadian Journal of Fisheries and Aquatic Sciences, 52, 2518-2526.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.