[1]
|
Tomizawa, S. (1992) A Model of Symmetry with Exponents along Every Subdiagonal and Its Application to Data on Unaided Vision of Pupils at Japanese Elementary Schools. Journal of Applied Statistics, 19, 509-512.
http://dx.doi.org/10.1080/02664769200000046
|
[2]
|
Bowker, A.H. (1948) A Test for Symmetry in Contingency Tables. Journal of the American Statistical Association, 43, 572-574. http://dx.doi.org/10.1080/01621459.1948.10483284
|
[3]
|
Caussinus, H. (1965) Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse, 29, 77-182.
|
[4]
|
Stuart, A. (1955) A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification. Biometrika, 42, 412-416. http://dx.doi.org/10.1093/biomet/42.3-4.412
|
[5]
|
Iki, K., Yamamoto, K. and Tomizawa, S. (2014) Quasi-Diagonal Exponent Symmetry Model for Square Contingency Tables with Ordered Categories. Statistics and Probability Letters, 92, 33-38.
http://dx.doi.org/10.1016/j.spl.2014.04.029
|
[6]
|
Bhapkar, V.P. and Darroch, J.N. (1990) Marginal Symmetry and Quasi Symmetry of General Order. Journal of Multivariate Analysis, 34, 173-184. http://dx.doi.org/10.1016/0047-259X(90)90034-F
|
[7]
|
Darroch, J.N. and Ratcliff, D. (1972) Generalized Iterative Scaling for Log-Linear Models. Annals of Mathematical Statistics, 43, 1470-1480. http://dx.doi.org/10.1214/aoms/1177692379
|
[8]
|
Darroch, J.N. and Silvey, S.D. (1963) On Testing More than One Hypothesis. Annals of Mathematical Statistics, 34, 555-567. http://dx.doi.org/10.1214/aoms/1177704168
|
[9]
|
Read, C.B. (1977) Partitioning Chi-Square in Contingency Table: A Teaching Approach. Communications in Statistics-Theory and Methods, 6, 553-562. http://dx.doi.org/10.1080/03610927708827513
|
[10]
|
Haber, M. (1985) Maximum Likelihood Methods for Linear and Log-Linear Models in Categorical Data. Computational Statistics and Data Analysis, 3, 1-10. http://dx.doi.org/10.1016/0167-9473(85)90053-2
|
[11]
|
Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975) Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge.
|
[12]
|
Kullback, S. (1971) Marginal Homogeneity of Multidimensional Contingency Tables. Annals of Mathematical Statistics, 42, 594-606. http://dx.doi.org/10.1214/aoms/1177693409
|
[13]
|
Haberman, S.J. (1974) The Analysis of Frequency Data. The University of Chicago Press, Chicago.
|
[14]
|
Goodman, L.A. (1981) Association Models and the Bivariate Normal for Contingency Tables with Ordered Categories. Biometrika, 68, 347-355. http://dx.doi.org/10.1093/biomet/68.2.347
|
[15]
|
Yamamoto, K., Tahata, K. and Tomizawa, S. (2012) Some Symmetry Models for the Analysis of Collapsed Square Contingency Tables with Ordered Categories. Calcutta Statistical Association Bulletin, 64, 21-36.
|
[16]
|
Tomizawa, S. (1985) Analysis of Data in Square Contingency Tables with Ordered Categories Using the Conditional Symmetry Model and Its Decomposed Models. Environmental Health Perspectives, 63, 235-239.
http://dx.doi.org/10.1289/ehp.8563235
|
[17]
|
Tahata, K. and Tomizawa, S. (2006) Decompositions for Extended Double Symmetry Models in Square Contingency Tables with Ordered Categories. Journal of the Japan Statistical Society, 36, 91-106.
http://dx.doi.org/10.14490/jjss.36.91
|
[18]
|
Agresti, A. (1983) A Simple Diagonals-Parameter Symmetry and Quasi-Symmetry Model. Statistics and Probability Letters, 1, 313-316. http://dx.doi.org/10.1016/0167-7152(83)90051-2
|
[19]
|
Tomizawa, S. (1991) An Extended Linear Diagonals-Parameter Symmetry Model for Square Contingency Tables with Ordered Categories. Metron, 49, 401-409.
|