[1]
|
Mahmoud, G.M., Aly, S.A. and Farghaly, A.A. (2004) Chaos Control of Chaotic Limit Cycles of Real and Complex Van der Pol Oscillators. Chaos, Solitons and Fractals, 21, 915-924. http://dx.doi.org/10.1016/j.chaos.2003.12.039
|
[2]
|
Farghaly, A.A. (2007) An Active Control for Chaos Synchronization of Real and Complex Van der Pol Oscillators. International Journal of Modern Physics C, 18, 795-804. http://dx.doi.org/10.1142/S0129183107010565
|
[3]
|
Mahmoud, G.M., Aly, S.A. and Al-Kashif, M.A. (2008) Dynamical Properties and Chaos Synchronization of a New Chaotic Complex Nonlinear System. Nonlinear Dynamics, 51, 171-181. http://dx.doi.org/10.1007/s11071-007-9200-y
|
[4]
|
Mahmoud, G.M., Rauh, A. and Mohamed, A.A. (2001) Applying Chaos Control to a Modulated Complex Nonlinear Systems. Il Nuovo Cimento, 116B, 113-126.
|
[5]
|
Liao, T.L. and Lin, S.H. (1999) Adaptive Control and Synchronization of Lorenz Systems. Journal of the Franklin Institute, 336, 925-937. http://dx.doi.org/10.1016/S0016-0032(99)00010-1
|
[6]
|
Pecora, L. and Carroll, T. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824.
http://dx.doi.org/10.1103/PhysRevLett.64.821
|
[7]
|
Mahmoud, G.M., Al-Kashif, M.A. and Aly, S.A. (2007) Basic Properties and Chaotic Synchronization of Complex Lorenz System. International Journal of Modern Physics C, 18, 235-265.
http://dx.doi.org/10.1142/S0129183107010425
|
[8]
|
Mahmoud, G.M. and Aly, S.A. (2000) Periodic Attractors of Complex Damped Nonlinear Systems. International Journal of Non-Linear Mechanics, 35, 309-323. http://dx.doi.org/10.1016/S0020-7462(99)00016-5
|
[9]
|
Liao, T.L. (1998) Adaptive Synchronization of Two Lorenz Systems. Chaos, Solitons and Fractals, 9, 1555-1561.
http://dx.doi.org/10.1016/S0960-0779(97)00161-6
|
[10]
|
Yorke, J.A. and Yorke, E.D. (1979) The Transition to Sustained Chaotic Behavior in the Lorenz Model. Journal of Statistical Physics, 21, 263-277. http://dx.doi.org/10.1007/BF01011469
|
[11]
|
Fowler, A.C., Gibbon, J.D. and McGuinnes, M.J. (1983) The Real and Complex Lorenz Equations and Their Relevance to Physical Systems. Physica D: Nonlinear Phenomena, 7, 126-134.
http://dx.doi.org/10.1016/0167-2789(83)90123-9
|
[12]
|
Mahmoud, G.M., Bountis, T. and Mahmoud, E.E. (2007) Active Control and Global Synchronization of the Complex Chen and Lü Systems. International Journal of Bifurcation and Chaos, 17, 4295-4308.
|
[13]
|
Lu, J.N., Wu, X.Q. and Li, J.H. (2002) Synchronization of a Unified System and the Application in Secure Communication. Physics Letters A, 305, 365-370. http://dx.doi.org/10.1016/S0375-9601(02)01497-4
|
[14]
|
Mahmoud, G.M., Rauh, A. and Mohamed, A.A. (1999) On Modulated Complex Nonlinear Dynamical Systems. Il Nuovo Cimento, 114B, 31-47.
|
[15]
|
Ott, E., Grebogi, C. and Yorke, J.A. (1990) Controlling Chaos. Physical Review Letters, 64, 1196-1199.
http://dx.doi.org/10.1103/PhysRevLett.64.1196
|
[16]
|
Ning, C.Z. and Haken, H. (1990) Detuned Lasers and the Complex Lorenz Equations-Subcritical and Supercritical Hopf Bifurcations. Physical Review A, 41, 3827-3837. http://dx.doi.org/10.1103/PhysRevA.41.3826
|
[17]
|
Vladimirov, A.G., Toronov, V.Y. and Derbov, V.L. (1998) The Complex Lorenz Model: Geometric Structure, Homoclinic Bifurcations and One-Dimensional Map. International Journal of Bifurcation and Chaos, 8, 723-729.
http://dx.doi.org/10.1142/S0218127498000516
|
[18]
|
Jones, C.A., Weiss, N.D. and Cataeno, F. (1985) Nonlinear Dynamos: A Complex Generalization of the Lorenz Equations. Physica D: Nonlinear Phenomena, 14, 161-176. http://dx.doi.org/10.1016/0167-2789(85)90176-9
|
[19]
|
George, P. (1989) New Exact Solutions of the Complex Lorenz Equations. Journal of Physics A, 22, 137-141.
http://dx.doi.org/10.1088/0305-4470/22/5/001
|
[20]
|
Roberts, P.H. and Glazmaier, G.A. (2000) Geodynamo Theory and Simulations. Reviews of Modern Physics, 72, 1083-1123. http://dx.doi.org/10.1103/RevModPhys.72.1081
|
[21]
|
Panchev, S. and Vitanov, N.K. (2005) On Asymptotic Properties of Some Complex Lorenz-Like Systems. Journal of Calcutta Mathematical Society, 1, 181-190.
|
[22]
|
Toronov, V.Y. and Derbov, V.L. (1997) Boundedness of Attractors in the Complex Lorenz Model. Physical Review E, 3, 3689-3692. http://dx.doi.org/10.1103/PhysRevE.55.3689
|
[23]
|
Lakshmikantham, V., Bainov, D. and Simeonov, P. (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore.
|
[24]
|
Yang, T., Yang, L.-B. and Yang, C.-M. (1997) Impulsive Control of Lorenz System. Physica D: Nonlinear Phenomena, 110, 18-24. http://dx.doi.org/10.1016/S0167-2789(97)00116-4
|
[25]
|
Chen, S.H., Yang, Q. and Wang, C.P. (2004) Impulsive Control and Synchronization of Unified Chaotic System. Chaos, Solitons & Fractals, 20, 751-758.
|
[26]
|
Richter, H. (2001) Controlling the Lorenz System: Combining Global and Local Schemes. Chaos, Solitons and Fractals, 12, 2375-2380.
|
[27]
|
Kongas, O., Herttzen, R.V. and Engelbrecht, J. (1999) Bifurcation Structure of a Periodically Driven Nerve Pulse Equation Modeling Cardiac Conduction. Chaos, Solitons and Fractals, 10, 119-136.
http://dx.doi.org/10.1016/S0960-0779(98)00056-3
|
[28]
|
Stewart, I. (2000) The Lorenz Attractor Exists. Nature, 406, 948-949.
|
[29]
|
Hayashi, C. (1964) Nonlinear Oscillations in Physical Systems. McGraw-Hill, New York.
|
[30]
|
Thompson, J.M.T. and Stewart, H.B. (1986) Nonliinear Dynamics and Chaos, Wiley, New York.
|