Study of the Crystallographic and Magnetic Structure in the Nickel Substituted Cobalt Ferrites by Neutron Diffraction

Abstract

The polycrystalline spinel oxides NiX Co1-X Fe2O4 with composition x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were prepared by conventional solid state ceramic sintering technique in air at 1300°C. X-ray diffraction experiments were carried out on all the samples at room temperature in order to characterize the materials. X-ray diffraction patterns showed sharp peaks indicating the formation of single phase cubic spinel structure. The neutron diffraction experiments were performed on all samples at room temperature, with an incident monochromatic neutron beam of wavelength λ = 1.5656 Å. The experimental neutron diffraction data were analyzed using the computer program FullProf in the Reitveld method. Reitveld refinement of the neutron diffraction data reveals that the samples possess cubic symmetry corresponding to the space group F d-3m. Cation distribution between the two sublattices of the spinel structure has been found from the analysis of the neutron diffraction data. Lattice parameters, oxygen position parameters, and overall temperature factors have also been determined from the analysis of neutron diffraction data. The lattice parameter decreases and oxygen position parameter increases with increasing Ni content in the system. Sublattices and net magnetic moments have been determined from the refinement of neutron diffraction data. The magnetic structure at room temperature was found to be ferrimagnetic for all the samples.

Share and Cite:

Khanam, S. , Zakaria, A. , Ahsan, M. , Datta, T. , Aktar, S. , Liba, S. , Hossain, S. , Das, A. , Kamal, I. , Yunus, S. , Saha, D. and Eriksson, S. (2015) Study of the Crystallographic and Magnetic Structure in the Nickel Substituted Cobalt Ferrites by Neutron Diffraction. Materials Sciences and Applications, 6, 332-342. doi: 10.4236/msa.2015.64038.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pardavi-Horvath, M. (2000) Microwave Application of Soft Ferrites. Journal of Magnetism and Magnetic Materials, 215-216, 171-183.
http://dx.doi.org/10.1016/S0304-8853(00)00106-2
[2] Ruiz, M.S., Bercoff, P.G. and Jacobo, S.E. (2013) Sheilding Properties of CuNiZn Ferrite in the Radio Frequency Range. Ceramics International, 39, 4777-4782.
http://dx.doi.org/10.1016/j.ceramint.2012.11.067
[3] Kkalaj-Amirhosseini, M. (2006) Microwave Filters Using Waveguides Filled by Multilayer Dielectric. Progress in Electromagnetics Research, 66, 105-110.
http://dx.doi.org/10.2528/PIER06102502
[4] Saed, M.A. and Yadla, R. (2006) Microstrip-Fed Low Profile and Compact Dielectric Resonator Antennas. Progress in Electromagnetics Research, 56, 151-162.
http://dx.doi.org/10.2528/PIER05041401
[5] Pasquale, M., Sasso, C.P., Velluto, M. and Lim, S.H. (2002) Stress Sensing with Co Based Ferrite Composites. Journal of Magnetism and Magnetic Materials, 242, 1460-1463.
http://dx.doi.org/10.1016/S0304-8853(01)01103-9
[6] Amiri, G.R., Yousefi, M.H., Abolhassani, M.R., Manouchehri, S., Keshavarz, M.H. and Fatahian, S. (2011) Magnetic Properties and Microwave Absorption in Ni-Zn and Mn-Zn Ferrite Nonoparticles Synthesized by Low-Temperature Solid-State Reaction. Journal of Magnetism and Magnetic Materials, 323, 730-734.
http://dx.doi.org/10.1016/j.jmmm.2010.10.034
[7] Yallapu, M.M., Othman, S.F., Curtis, E.T., Gupta, B.K., Jaggi, M. and Chauhan, S.C. (2011) Multifunctional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy. Biomaterials, 32, 1890-1905.
http://dx.doi.org/10.1016/j.biomaterials.2010.11.028
[8] Zakaria, A.K.M., Asgar, M.A., Eriksson, S.-G., Ahmed, F.U., Yunus, S.M. and Rundlof, H. (2003) The Study of Mag- netic Ordering in the Spinel System ZnxNi1-xFeCrO4 by Neutron Diffraction. Journal of Magnetism and Magnetic Materials, 265, 311-320.
http://dx.doi.org/10.1016/S0304-8853(03)00280-4
[9] Zakaria, A.K.M. and Asgar, M.A. (2005) Studies of the Magnetic Ordering in the Spinel System Zn0.4Co0.6AlxFe2-xO4 by Neutron Diffraction. Journal of Alloys and Compounds, 396, 44-53. http://dx.doi.org/10.1016/j.jallcom.2004.12.022
[10] Nesa, F., Zakaria, A.K.M., Khan, M.A.S., Yunus, S.M., Das, A.K., Eriksson, S.-G., Khan, M.N.I., Saha, D.K. and Hakim, M.A. (2012) Structural and Magnetic Properties of Cr3+ Doped Mg Ferrites. World Journal of Condensed Matter Physics, 2, 27-35.
http://dx.doi.org/10.4236/wjcmp.2012.21005
[11] Akter, S., Paul, D.P., Hakim, M.A., Saha, D.K., Al-Mamun, M. and Parveen, A. (2011) Synthesis, Structural and Phy- sical Properties of Cu1-xZnxFe2O4 Ferrites. Materials Sciences and Applications, 2, 1675-1681.
http://dx.doi.org/10.4236/msa.2011.211223
[12] Hoque, S.M., Choudhury, M.A. and Islam, M.F. (2002) Characterization of Ni-Cu Mixed Spinel Ferrites. Journal of Magnetism and Magnetic Materials, 251, 292-303.
http://dx.doi.org/10.1016/S0304-8853(02)00700-X
[13] Akther Hossain, A.K.M., Mahmud, S.T., Seki, M., Kawai, T. and Tabata, H. (2007) Structural, Electrical Transport and Magnetic Properties of Ni1-xZnxFe2O4. Journal of Magnetism and Magnetic Materials, 312, 210-219.
http://dx.doi.org/10.1016/j.jmmm.2006.09.030
[14] Xu, C. (2001) Magnetic and Microwave Absorption Properties of Ni1-xCoxFe2O4 Nanometer Powders in GHz Frequencies. Materials Science Forum, 694, 380-384.
http://dx.doi.org/10.4028/www.scientific.net/MSF.694.380
[15] Liu, B.H., Ding, J., Yi, J.B., Yin, J.H. and Dong, Z.L. (2008) Magnetic Anisotopies in Cobalt Nickel Ferrites. Journal of the Korean Physical Society, 52, 1483-1486.
http://dx.doi.org/10.3938/jkps.52.1483
[16] Yunus, S.M., Yamauchi, H., Zakaria, A.K.M., Igawa, N., Hoshikawa, A. and Ishii, Y. (2008) Cation Distribution and Crystallographic Characterization of the Quaternary Spinel System MgxCo1-xCrxFe2-xO4. Journal of Alloys and Compounds, 454, 10-15.
http://dx.doi.org/10.1016/j.jallcom.2006.12.022
[17] Ghatage, A.K., Patil, S.A. and Paranjpe, S.K. (1996) Neutron Diffraction Study of Chromium Substituted Nickel Ferrite. Solid State Communications, 98, 885-888.
http://dx.doi.org/10.1016/0038-1098(96)00036-1
[18] Yunus, S.M., Fernandez-Baca, J.A., Asgar, M.A., Ahmed, F.U. and Hakim, M.A. (1999) Neutron Diffraction Studies of the Magnetic Disorder in ZnxMg0.8-xNi0.2Fe2O4 Ferrite with x = 0.0, 0.2, 0.4 and 0.6. Physica B, 262, 112-124.
http://dx.doi.org/10.1016/S0921-4526(98)00655-3
[19] Zakaria, A.K.M., Asgar, M.A., Eriksson, S.G., Ahmed, F.U., Yunus, S.M., Azad, A.K. and Rundlof, H. (2003) Preparation of Zn Substituted Ni-Fe-Cr Ferrites and Study of the Crystal Structure by Neutron Diffraction. Materials Letters, 57, 4243-4250.
http://dx.doi.org/10.1016/S0167-577X(03)00298-2
[20] Rodriguez-Carvajal, J. (1993) Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Physica B, 192, 55-69.
http://dx.doi.org/10.1016/0921-4526(93)90108-I
[21] Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2, 65-71.
http://dx.doi.org/10.1107/S0021889869006558
[22] Vegard, L. (1921) Zeitchrift for Physik a Hadrons and Nuclei. Physics and Astronomy, 5, 17-26.
[23] Piox, P. (1965) Sur une méthode de détermination des distances cation-oxygéne dans les oxides mixtes à structure spinelle, Application des valeurs à quelques cas particuliers. Bulletin de la Société Chimique de France, 5, 1085-1087.
[24] Piox, P. (1969) Chime Minérale. Table générale des distances caractéristiques “métal-oxygéne” en coordinate 6. Com- ptes Rendus de l’Académie des Sciences Paris, Série C, 268, 1139-1140.
[25] Krupicka, S. and Novak, P. (1982) In: Wohlfarth, E.P., Ed., Ferromagnetic Materials, Vol. 3, North-Holland, Amsterdam.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.