Relationship between the Fundamental Constants of Physics Obtained from the Uncertainty Principle for Energy and Time

Abstract Full-Text HTML XML Download Download as PDF (Size:247KB) PP. 622-626
DOI: 10.4236/jmp.2015.65067    3,196 Downloads   3,697 Views  

ABSTRACT

An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge.

Cite this paper

Olszewski, S. (2015) Relationship between the Fundamental Constants of Physics Obtained from the Uncertainty Principle for Energy and Time. Journal of Modern Physics, 6, 622-626. doi: 10.4236/jmp.2015.65067.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Heisenberg, W. (1927) Zeitschrift fuer Physik, 43, 172.
http://dx.doi.org/10.1007/BF01397280
[2] Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.
[3] Schommers, W. (1989) Space-Time and Quantum Phenomena. In: Schommers, W., Ed., Quantum Theory and Pictures of Reality, Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-95570-9_5
[4] Allcock, G.R. (1969) Annals of Physics, 53, 253.
http://dx.doi.org/10.1016/0003-4916(69)90251-6
[5] Bunge, M. (1970) Canadian Journal of Physics, 48, 1410.
http://dx.doi.org/10.1139/p70-172
[6] Isaacs, A. (1990) Concise Dictionary of Physics. Oxford University Press, Oxford.
[7] Olszewski, S. (2011) Journal of Modern Physics, 2, 1305.
http://dx.doi.org/10.4236/jmp.2011.211161
[8] Olszewski, S. (2012) Journal of Modern Physics, 3, 217.
http://dx.doi.org/10.4236/jmp.2012.33030
[9] Olszewski, S. (2012) Quantum Matter, 1, 127.
http://dx.doi.org/10.1166/qm.2012.1010
[10] Olszewski, S. (2014) Journal of Modern Physics, 5, 1264.
http://dx.doi.org/10.4236/jmp.2014.514127
[11] Olszewski, S. (2014) Journal of Modern Physics, 5, 2022-2029.
http://dx.doi.org/10.4236/jmp.2014.518198
[12] Olszewski, S. (2014) Journal of Modern Physics, 5, 2030-2040.
http://dx.doi.org/10.4236/jmp.2014.518199
[13] Olszewski, S. (2012) Quantum Matter, 1, 59-62.
http://dx.doi.org/10.1166/qm.2012.1006
[14] Pauli, W. (1933) Die allgemeine Prinzipien der Wellenmechanick. In: Geiger, H. and Scheel, K., Eds., Handbuch der Physik, Vol. 24, Part 1, Springer, Berlin.
[15] Ruark, A.E. (1928) Proceedings of the National Academy of Sciences of the United States of America, 14, 322-328.
http://dx.doi.org/10.1073/pnas.14.4.322
[16] Flint, H.E. (1928) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 117, 630-637.
http://dx.doi.org/10.1098/rspa.1928.0025
[17] Flint, H.E. and Richardson, O.W. (1928) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 117, 637-649.
http://dx.doi.org/10.1098/rspa.1928.0026
[18] Jammer, M. (1966) The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.