Mathematical Modeling of the Amperometric Response to Glucose of Glucose Oxidase Films Deposited by AC-Electrophoresis
Jan Fransaer, Malika Ammam
.
DOI: 10.4236/jst.2011.12003   PDF    HTML     6,242 Downloads   11,835 Views   Citations

Abstract

Previous work illustrated that glucose oxidase (GOx) could be deposited on conducting substrates using asymmetrical alternating current electrophoretic deposition (AC-EPD) to form thick enzyme layers suitable for the manufacturing of highly active biosensors. Here, we modeled the amperometric response of GOx layers to glucose as a function of the thickness of the enzyme layer. The model is based on reaction-diffusion equations with irreversible first-order catalytic reactions. The numerical results displayed qualitative and reasonable quantitative agreement with the experimental data obtained for oxidation currents due to glucose, which increase with the enzyme thickness.

Share and Cite:

J. Fransaer and M. Ammam, "Mathematical Modeling of the Amperometric Response to Glucose of Glucose Oxidase Films Deposited by AC-Electrophoresis," Journal of Sensor Technology, Vol. 1 No. 2, 2011, pp. 17-21. doi: 10.4236/jst.2011.12003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. P. Turner, “Biosensors-Sense and Sensitivity,” Science, Vol. 290, No. 5495, November 2000, pp. 1315-1317. doi:10.1126/science.290.5495.1315
[2] G. Davis, “Electrochemical Techniques for the Development of Amperometric Biosensors,” Biosensors, Vol. 1, No. 2, 1985, pp. 161-178.
[3] U. J. Krull, R. S. Brown, E. T. Vandenberg and B. D. Hougham, “Engineering in Medicine and Biology Society,” The International Conference on Rehabilitation Robotics, Zurich, 29 June-1 July 2011, pp. 793-794.
[4] D. R. Thévenot, K. Toth and G. S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Cla- ssification,” Pure and Applied Chemistry, Vol. 71, No. 12, July 1999, pp. 2333-2348.
[5] W. Schuhmann, “Non-Leaking Amperometric Biosensors Based on High-Molecular Ferrocene Derivatives,” Biosensors & Bioelectronics, Vol. 8, No. 3-4, 1993, pp. 191- 196. doi:10.1016/0956-5663(93)85032-J
[6] G. S. Wilson and M. Ammam, “In Vivo Biosensors,” FEBS Journal, Vol. 274, No. 21, November 2007, pp. 5452-5461. doi:10.1111/j.1742-4658.2007.06077.x
[7] F. López-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J. M. Guisán and R. Fernández-Lafuente, “Enzyme Stabilization by Glutaraldehyde Crosslinking of Adsorbed Proteins on Aminated Supports,” Journal of Biotechnology, Vol. 119, September 2005, pp. 70-75.
[8] J. F. Kennedy, B. Kalogerakis, J. M. S. Cabral, “Surface Immobilization and Entrapping of Enzymes on Glutaraldehyde Crosslinked Gelatin Particles,” Enzyme and Microbial Technology, Vol. 6, No. 3, March 1984, pp. 127- 131. doi:10.1016/0141-0229(84)90119-4
[9] R. J. Geise, J. M. Adame, N. J. Barone and A. M. Yacynych, “Electropolymerized Films to Prevent Interferences and Electrode Fouling in Biosensors,” Biosensors and Bioelectronics, Vol. 6, No. 2, 1991, pp. 151-160. doi:10.1016/0956-5663(91)87039-E
[10] M. Campás and J.-L. Marty, “Methods in Biotechnology: Encapsulation of Enzymes Using Polymers and Sol-Gel Techniques,” 2nd Edition, Vol. 22, Humana Press, Totowa, 2008.
[11] X. Chen, Y. Hu and G. S. Wilson, “Glucose Microbiosensor Based on Alumina Sol–Gel Matrix/Electropo- lymerized Composite Membrane,” Biosensors and Bioelectronics, Vol. 17, December 2002, pp. 1005-1013. doi:10.1016/S0956-5663(02)00093-3
[12] M. Kumakura, “Effect of Heat Treatment on Enzymes Entrapped into Polymer Gels,” Journal of Molecular Catalysis B: Enzymatic, Vol. 1, No. 1, December 1995, pp. L1-L6. doi:10.1016/1381-1177(95)00007-0
[13] X. Chen, N. Matsumoto, H. Hu and G. S. Wilson, “Electrochemically Mediated Electrodeposition/Electropoly- merization to Yield a Glucose Microbiosensor with Improved Characteristics,” Analytical Chemistry, Vol. 74, No. 2, 2002, pp. 368-372. doi:10.1021/ac015628m
[14] M. Ammam and J. Fransaer, “Micro-Biofuel Cell Powered by Glucose/O2 Based on Electro-Deposition of Enzyme, Conducting Polymer and Redox Mediators: Preparation, Characterization and Performance in Human Serum,” Biosensors and Bioelectronics, Vol. 25, February 2010, pp. 1474-1480. doi:10.1016/j.bios.2009.11.001
[15] M. Ammam and J. Fransaer, “AC-Electrophoretic Deposition of Glucose Oxidase,” Biosensors and Bioelectronics, Vol. 25, September 2009, pp. 191-197.
[16] M. Ammam and J. Fransaer, “Glucose Microbiosensor Based on Glucose Oxidase Immobilized by AC-EPD: Characteristics and Performance in Human Serum and in Blood of Critically Ill Rabbits,” Sensors and Actuators B: Chemical, Vol. 145, No. 1, March 2010, pp. 46-53. doi:10.1016/j.snb.2009.11.015
[17] M. Ammam and J. Fransaer, “Highly Sensitive and Selective Glutamate Microbiosensor Based on Cast Polyurethane/AC-Electrophoresis Deposited Multiwalled Carbon Nanotubes and then Glutamate Oxidase/Electro- synthesized Polypyrrole/Pt Electrode,” Biosensors and Bioelectronics, Vol. 25, March 2009, pp. 1597-1602.
[18] M. Ammam and J. Fransaer, “Two-Enzyme Lactose Biosensor Based on ?-Galactosidase and Glucose Oxidase Deposited by AC-Electrophoresis: Characteristics and Performance for Lactose Determination in Milk,” Sensors and Actuators B: Chemical, Vol. 148, July 2010, pp. 583-589. doi:10.1016/j.snb.2010.05.027
[19] M. E. G. Lyons, “Transport and Kinetics at Carbon Nanotube-Redox Enzyme Composite Modified Electrodes Biosensors,” International Journal of Electrochemical Science, Vol. 4, 2009, pp. 77-103.
[20] P. N. Bartlett and R. G. Whitaker, “Electrochemical Immobilization of Enzymes: Part I. Theory,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 224, No. 1-2, June 1987, pp. 27-35. doi:10.1016/0022-0728(87)85081-7
[21] P. N. Bartlett and K. F. E. Pratt, “Modeling of Process in Enzyme Electrodes,” Biosensors and Bioelectronics, Vol. 8, 1993, pp. 451-462. doi:10.1016/0956-5663(93)80030-S
[22] J. J. Kulys, V. V. Sorochinskii and R. A. Vidziunaite, “Transient Response of Bienzyme Electrodes,” Biosensors, Vol. 2, 1986, pp. 135-146. doi:10.1016/0265-928X(86)80001-3
[23] K. Karmali, A. Karmali, A. Teixeira and M. J. Marcelo Curto, “Assay for Glucose Oxidase from Aspergillus Niger and Penicillium Amagasakiense by Fourier Transform Infrared Spectroscopy,” Analytical Biochemistry, Vol. 333, No. 2, October 2004, pp. 320-327. doi:10.1016/j.ab.2004.06.025
[24] P. S. Stewart, “Diffusion in Biofilms,” Journal of Bacteriology, Vol. 185, No. 5, March 2003, pp. 1485-1491. doi:10.1128/JB.185.5.1485-1491.2003
[25] L. G. Longsworth, “Diffusion in Liquids and the Stokes- -Einstein Relation,” In: T. Shedlovsky, Ed., Electrochemistry in Biology and Medicine, John Wiley & Sons, New York, 1955, pp. 225-247.
[26] R. J. Meyer, “System-Nr. 3. Sauerstoff-Lieferung 7. Wasserstoffperoxid. 1966 IV, XXVII, 430 Seiten, 82 Figuren. Ganzleinen DM 398,-,” Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 71, No. 5, 1967, p.537.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.