EEG-Based Estimation and Classification of Mental Fatigue


Mental fatigue was associated with increased power in frontal theta (θ) and parietal alpha (α) EEG rhythms. A statistical classifier can use these effects to model EEG-fatigue relationships accurately. Participants (n = 22) solved math problems on a computer until either they felt exhausted or 3 h had elapsed. Pre- and post-task mood scales showed that fatigue increased and energy decreased. Mean response times rose from 6.7 s to 7.9 s but accuracy did not change significantly. Mean power spectral densities or PSDs of θ and α bands rose by 29% and 44%, respectively. A kernel partial least squares classifier trained to classify PSD coefficients (1 - 18 Hz) of single 13-s EEG segments from alert or fatigued task periods was 91% to 100% accurate. For EEG segments from other task periods, the classifier outputs tracked the time course of the development of mental fatigue. By this measure, most subjects became substantially fatigued after 60 min of task performance. However, the trajectories of individual classifier outputs showed that EEG signs of developing fatigue were present in all subjects after 15 - 30 minutes of task performance. The results show that EEG can track the development of mental fatigue over time with accurate updates on a time scale a short as 13 seconds. In addition, the results agree with the notion that growing mental fatigue produces a shift away from executive and attention networks to default mode and is accompanied by a shift in alpha frequency to the lower alpha band.

Share and Cite:

Trejo, L. , Kubitz, K. , Rosipal, R. , Kochavi, R. & Montgomery, L. (2015). EEG-Based Estimation and Classification of Mental Fatigue. Psychology, 6, 572-589. doi: 10.4236/psych.2015.65055.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Anderson, J. R. (1995). Cognitive Psychology and Its Implications: Fourth Edition. New York: Freeman.
[2] Barth, J. L., Holding, D. H., & Stamford, B. A. (1976). Risk versus Effort in the Assessment of Motor Fatigue. Journal of Motor Behavior, 8, 189-194.
[3] Barwick, F., Arnett, P., & Slobounov, S. (2012). EEG Correlates of Fatigue during Administration of a Neuropsychological Test Battery. Clinical Neurophysiology, 123, 278-284.
[4] Beatty, J., Greenberg, A., Deibler, W. P., & O’Hanlon, J. F. (1974). Operant Control of Occipital Theta Rhythm Affects Performance In a Radar Monitoring Task. Science, 183, 871-873.
[5] Brown, I. D., Tickner, A. H., & Simmonds, D. C. V. (1970). Effect of Prolonged Driving on Overtaking Criteria. Ergonomics, 13, 239-242.
[6] Chaudhuri, A., & Behan, P. O. (2004). Fatigue in Neurological Disorders. The Lancet, 363, 978-988.
[7] De Jong, S. (1993). SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 18, 251-263.
[8] Delorme, A., & Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods, 134, 9-21.
[9] Dinges, D. F. (1995). An Overview of Sleepiness and Accidents. Journal of Sleep Research, 4, 4-14.
[10] Dingus, T. A., Klauer, S. G., Neale, V. L., Petersen, A., Lee, S. E., Sudweeks, J., Perez, M. A., Hankey, J., Ramsey, D., Gupta, S., Bucher, C., Doerzaph, Z. R., Jermeland, J., & Knipling, R. R. (2006). The 100-Car Naturalistic Driving Study, Phase ii—Results of the 100-Car Field Experiment Performed by Virginia Tech Transportation Institute, Blacksburg, VA, Sponsored by National Highway Traffic Safety Administration, Washington DC, April 2006, DOT HS 810 593 - April 2006.
[11] Galbraith, G. C., & Wong, E. H. (1993). Moment Analysis of EEG Amplitude Histograms and Spectral Analysis: Relative Classification of Several Behavioral Tasks. Perceptual and Motor Skills, 76, 859-866.
[12] Gevins, A., Leong, H., Du, R., Smith, M. E., Le, J., DuRousseau, D., & Libove, J. (1995). Towards Measurement of Brain Function in Operational Environments. Biological Psychology, 40, 169-186.
[13] Gevins, A., Smith, M. E., Leong, H., McEvoy, L., Whitfield, S., Du, R., & Rush, G. (1998). Monitoring Working Memory Load during Computer-Based Tasks with EEG Pattern Recognition Methods. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40, 79-91.
[14] Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-Resolution EEG Mapping of Cortical Activation Related to Working Memory: Effects of Task Difficulty, Type of Processing, and Practice. Cerebral Cortex, 7, 374-385.
[15] Hall, J. (2000). Opening Remarks. National Transportation Safety Board, Public Hearing on Aircraft Accident, American Airlines Flight 1420, Little Rock, Arkansas, 1 June 1999. Accessed 27 January 2015.
[16] Horne, J. A. (1988). Sleep Loss and “Divergent” Thinking Ability. Sleep, 11, 528-536.
[17] Hurd, R. (2007). Fatigue. Medline plus Medical Encyclopedia. U.S. National Library of Medicine and National Institutes of Health. Accessed 1/25/2015
[18] Jann, K., Dierks, T., Boesch, C., Kottlow, M., Strik, W., & Koenig, T. (2009).BOLD Correlates of EEG Alpha Phase-Locking and the FMRI Default Mode Network. Neuroimage, 45, 903-916.
[19] Jann, K., Kottlow, M., Dierks, T., Boesch, C., & Koenig, T. (2010). Topographic Electrophysiological Signatures of fMRI Resting State Networks. PLoS ONE, 5, e12945.
[20] Kennedy, J. L. (1953). Some Practical Problems of the Alertness Indicator. In W. F. Floyd, & A. T. Welford (Eds.), Symposium on Fatigue (pp. 149-153). Oxford: H. K. Lewis & Co.
[21] Klimesch, W. (1999). EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Research Reviews, 29, 169-195.
[22] Klimesch, W., Doppelmayr, M., Schimke, H., & Ripper, B. (1997).Theta Synchronization and Alpha Desynchronization in a Memory Task. Psychophysiology, 34, 169-176.
[23] Krishnan,V. K., Dasari, D., & Ding, L. (2014). EEG Correlates of Fluctuation in Cognitive Performance in an Air Traffic Control Task. Technical Report DOT/FAA/AM-14/12. Washington DC: Office of Aerospace Medicine, Federal Aviation Administration.
[24] Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic Signatures of Attentional and Cognitive Default Modes in Spontaneous Brain Activity Fluctuations at Rest. Proceedings of the National Academy of Sciences of the United States of America, 100, 11053-11058.
[25] Lim, J., Wu, W. C., Wang, J., Detre, J. A., Dinges, D. F., & Rao, H. (2010). Imaging Brain Fatigue from Sustained Mental Workload: An ASL Perfusion Study of the Time-on-Task Effect. NeuroImage, 49, 3426-3435.
[26] Lorist, M. M., Boksem, M. A., & Ridderinkhof, K. R. (2005). Impaired Cognitive Control and Reduced Cingulate Activity During Mental Fatigue. Cognitive Brain Research, 24, 199-205.
[27] Makeig, S., & Inlow, M. (1993). Lapses in Alertness: Coherence of Fluctuations in Performance and EEG Spectrum. Electroencephalography and Clinical Neurophysiology, 86, 23-35.
[28] Mast, T. M., & Heimstra, N. W. (1964). Effects of Fatigue on Vigilance Performance. Journal of Engineering Psychology, 3, 73-79.
[29] Mecklinger, A., Kramer, A. F., & Strayer, D. L. (1992). Event Related Potentials and EEG Components in a Semantic Memory Search Task. Psychophysiology, 29, 104-119.
[30] Montgomery, L. D., Montgomery, R. W., & Guisado, R. (1995). Rheoencephalographic and Electroencephalographic Measures of Cognitive Workload: Analytical Procedures. Biological Psychology, 40, 143-159.
[31] Murta, T., Leite, M., Carmichael, D. W., Figueiredo, P., & Lemieux, L. (2015). Electrophysiological Correlates of the BOLD Signal for EEG-Informed fMRI. Human Brain Mapping, 36, 391-414.
[32] Neri, D. F., Shappell, S. A., & DeJohn, C. A. (1992). Simulated Sustained Flight Operations and Performance, Part 1: Effects of Fatigue. Military Psychology, 4, 137-155.
[33] Nyenhuis, D. L., Stern, R. A., Yamamoto, C., Luchetta, T., & Arruda, J. E. (1997). Standardization and Validation of the Visual Analogue Mood Scales. Clinical Neuropsychologist, 11, 407-415.
[34] Pacific Development and Technology, LLC (2012). APECSgui Installation Guide and User Manual Version 1.0. Accessed 9 February 2015.
[35] Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical Splines for Scalp Potential and Current Density Mapping. Electroencephalography and Clinical Neurophysiology, 72, 184-187.
[36] Pfurtscheller, G., & Lopes da Silva, F. H. (2005). Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). In E. Niedermeyer, & F. H. Lopes da Silva (Eds.), Electroencephalography, Basic Principles, Clinical Applications and Related Fields (pp. 1003-1016). Philadelphia: Lippincott Williams & Wilkins.
[37] Rosipal, R., & Trejo, L. J. (2001). Kernel Partial Least Squares in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research, 2, 97-123.
[38] Rosipal, R., Girolami, M., Trejo, L. J., & Cichocki, A. (2001). Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression. Neural Computing & Applications, 10, 231-243.
[39] Rosipal, R., Trejo, L. J., & Nunez, P. L. (2009). Application of Multi-Way EEG Decomposition for Cognitive Workload Monitoring. In V. E. Vinzi, M. Tenenhaus, & R. Guan (Eds.), Proceedings of the 6th International Conference on Partial Least Squares and Related Methods (pp. 145-149). Beijing.
[40] Rosipal, R., Trejo, L. J., & Zaidel, E. (2013). Atomic Decomposition of EEG for Mapping Cortical Activation. Tensor Methods for Machine Learning Workshop, Prague, 27 September 2013.
[41] Rosipal, R., Trejo, L. J., & Matthews, B. (2003). Kernel PLS-SVC for Linear and Nonlinear Classification. In T. Fawcett, & N. Mishra (Eds.), Proceedings of the Twentieth International Conference on Machine Learning (pp. 640-647). Washington DC, 21-24 August 2003.
[42] Russo, M. B., Stetz, M. C., & Thomas, M. L. (2005). Monitoring and Predicting Cognitive State and Performance via Physiological Correlates of Neuronal Signals. Aviation, Space, and Environmental Medicine, 76, C59-C63.
[43] Sagberg, F., Jackson, P., Kruger, H.-P., Muzer, A., & Williams, A. (2004). Fatigue, Sleepiness and Reduced Alertness as Risk Factors in Driving. TOI Report 739/2004, Institute of Transport Economics, Oslo.
[44] Shen, A., Li, X., Ong, C., Shao, S., & Wilder-Smith, P. V. (2008). EEG-Based Mental Fatigue Measurement Using Multi-Class Support Vector Machines with Confidence Estimate. Clinical Neurophysiology, 119, 1524-1533.
[45] Shingledecker, C. A., & Holding, D. H. (1974). Risk and Effort Measures of Fatigue. Journal of Motor Behavior, 6, 17-25.
[46] Sípos, I. (1971). Verbal Vigilance Performance and Visual Fatigue. Studia Psychologica, 13, 141-142.
[47] Smit, A. S., Eling, P. A. T. M., & Coenen, A. M. L. (2004). Mental Effort Causes Vigilance Decrease due to Resource Depletion. Acta Psychologica, 115, 35-42.
[48] Smith, M. E., Gevins, A., Brown, H., Karnik, A., & Du, R. (2001). Monitoring Task Loading with Multivariate EEG Measures during Complex Forms of Human-Computer Interaction. Human Factors, 43, 366-380.
[49] Stern, R. A. (1997). Visual Analogue Mood Scales. Odessa, FL: Psychological Assessment Resources.
[50] Thayer, R. E. (1986). Activation-Deactivation Adjective Check List: Current Overview and Structural Analysis. Psychological Reports, 58, 607-614.
[51] Thayer, R. E. (1989). The Biopsychology of Mood and Arousal. New York: Oxford University Press.
[52] Trejo, L. J., Matthews, R., & Allison, B. Z. (2007). Experimental Design and Testing of a Multimodal Cognitive Overload Classifier. In D. D. Schmorrow, D. M. Nicholson, J. M. Drexler, & L. M. Reeves (Eds.), Foundations of Augmented Cognition (4th ed., pp. 13-22). Arlington, VA: Strategic Analysis, Inc.
[53] Trejo, L. J., Rosipal, R., & Matthews, B. (2006). Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 225-229.
[54] Trejo, L., Knuth, K., Prado, R., Rosipal, R., Kubitz, K. Kochavi, R., Matthews, B., & Zhang, Y. (2007). EEG-Based Estimation of Mental Fatigue: Convergent Evidence for a Three-State Model. HCI International 2007 and Augmented Cognition International Conference, Beijing, 22-27 July 2007. In D.D. Schmorrow, & L.M. Reeves (Eds.), Augmented Cognition, HCII 2007, LNAI 4565 (pp. 201-211). New York: Springer LNCS.
[55] Trejo, L. J., & Shensa, M. J. (1999). Feature Extraction of Event-Related Potentials Using Wavelets: An Application to Human Performance Monitoring. Brain and Language, 66, 89-107.
[56] Trejo, L. J., Rosipal, R., & Nunez, P. L. (2010). Advanced Physiological Estimation of Cognitive Status. The 27th Army Science Conference, Orlando, 29 November-2 December 2010.
[57] U.S. Congress, Office of Technology Assessment (1991). Biological Rhythms: Implications for the Worker, OTA-BA-463. Washington DC: U.S. Government Printing Office.
[58] van der Hulst, M., Meijman, T., & Rothengatter, T. (2001). Maintaining Task Set under Fatigue: A Study of Time-on-Task Effects in Simulated Driving. Transportation Research Part F: Traffic Psychology & Behavior, 4, 103-118.
[59] van der Linden, D., Frese, M., & Meijman, T. F. (2003). Mental Fatigue and the Control of Cognitive Processes: Effects on Perseveration and Planning. Acta Psychologica, 113, 45-65.
[60] van der Linden, D., Frese, M., & Sonnentag, S. (2003). The Impact of Mental Fatigue on Exploration in a Complex Computer Task: Rigidity and Loss of Systematic Strategies. Human Factors, 45, 483-494.
[61] Vidulich, M. A., Stratton, M., Crabtree, M., & Wilson, G. (1994). Performance-Based and Physiological Measures of Situational Awareness. Aviation, Space, and Environmental Medicine, 65, A7-A12.
[62] Wallerius, J., Trejo, L. J., Matthews, R., Rosipal, R., & Caldwell, J. A. (2005). Robust Feature Extraction and Classification of EEG Spectra for Real-Time Classification of Cognitive State. Proceedings of 11th International Conference on Human Computer Interaction, Las Vegas.
[63] Wilson, G. F., & Fisher, F. (1991).The Use of Cardiac and Eye Blink Measures to Determine Flight Segment in F4 Crews. Aviation, Space and Environmental Medicine, 62, 959-962.
[64] Wilson, G. F., & Fisher, F. (1995). Cognitive Task Classification Based upon Topographic EEG Data. Biological Psychology, 40, 239-250.
[65] Wilson, G. F., & Russell, C. A. (2003a). Operator Functional State Classification Using Multiple Psychophysiological Features in an Air Traffic Control Task. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45, 381-389.
[66] Wilson, G. F., & Russell, C. A. (2003b). Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks. Human Factors, 45, 635-643.
[67] Winningham, M. L. (1996). Fatigue. In S. L. Groenwald, M. Hansen Frogge, M. Goodman, & C. H. Yarbro (Eds.), Cancer Symptom Management (pp. 42-54). Sudbury, MA: Jones and Bartlett.
[68] Zaidel, E., Rosipal, R., Hill, A., Fernandes, N., Akbarut, R., Noh, S., & Trejo, L. J. (2013). Modeling EEG-Band Neurofeedback: Modulating Internal States without Conditioning of EEG Sources. ISNR 21st Annual Conference, Dallas, 18-22 September 2013.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.