Diffusion Weighted MRI: A Practical and Quick Approach to Evaluate Brain Death


It is significantly important to define brain death with greater precision in terms of timing and accuracy. While in the past determination of brain death is simply based on conventional angiography, now with major technological advances the Diffusion-weighted MRI is a new method sensitive to cerebral ischemia which gives on the molecular level the deeply ischemic nature of the changes. Its value in brain death has been shown in various studies. In our study, we did a comparative overview of diffusion-weighted imaging (DWI) with and magnetic resonance angiography (MRA) considering the contribution of ADC measurements from brain parenchyma, in the patients diagnosed with brain death by clinical criteria. We studied 16 brain deaths in serial studies, in which there is a prominent difference between the white and gray matter ADC values on diffusion MRI. In the postmortem brains, ADC values comparing with the normal brain parenchyma, were reduced 65% in white matter and 42% in gray matter. Also, the patients’ ADC values of gray and white matter were significantly lower than those of irreversible brain-ischemia patients’ in ADC values. In comparison to most of the other studies, in our study population studied is large, in which is a comprehensive study that results consistent with the literature. As a result we propose that in the definition of brain death Diffusion MRI and ADC measurements are reliable to show diffuse ishemic changes of brain parenchyma.

Share and Cite:

Akpinar, I. , Aygun, B. , Cimsit, N. and Turkoglu, O. (2015) Diffusion Weighted MRI: A Practical and Quick Approach to Evaluate Brain Death. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 113-123. doi: 10.4236/ijmpcero.2015.42015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] (1968) Ad Hoc Committee of Harvard Medical School to Examine the Definition of Brain Death: A Definition of Irreversible Coma. JAMA, 205, 337-340.
[2] Lovblad, K. and Bassetti, C. (2000) Diffusion-Weighted Magnetic Resonance Imaging in Brain Death. Stroke, 31, 539-542.
[3] Douek, P., et al. (1991) MR Color Mapping of Myelin Fiber Orientation. Journal of Computer Assisted Tomography, 15, 923-929.
[4] Greitz, T., et al. (1973) Aorto-Cranial and Carotid Angiography in Determination of Brain Death. Neuroradiology, 5, 13-19.
[5] Palmer, S. and Bader, M.K. (2005) Brain Tissue Oxygenation in Brain Death. Neurocritical Care, 2, 17-22.
[6] Monsein, L.H. (1995) The Imaging of Brain Death. Anaesthesia and Intensive Care, 23, 44-50.
[7] Jones, K. and Barnes, P.D. (1992) MR Diagnosis of Brain Death. American Journal of Neuroradiology, 13, 65-66.
[8] Paolin, A., et al. (1995) Reliability in Diagnosis of Brain Death. Intensive Care Medicine, 21, 657-662.
[9] Facco, E., et al. (1998) Tc-HMPAO SPECT in the Diagnosis of Brain Death. Intensive Care Medicine, 24, 911-917.
[10] Goodman, J.M., Heck, L.L. and Moore, B.D. (1985) Confirmation of Brain Death with Portable Isotope Angiography: A Review of 204 Consecutive Cases. Neurosurgery, 16, 492-497.
[11] Holzman, B.H., Curless, R.G., Sfakianakis, G.N., Ajmone-Marsan, C. and Montes, J.E. (1983) Radionuclide Cerebral Perfusion Scintigraphy in Determination of Brain Death in Children. Neurology, 33, 1027.
[12] Gomes, A. and Hallinan, J. (1983) Intravenous Digital Subtraction Angiography in the Diagnosis of Brain Death. American Journal of Neuroradiology, 4, 21-24.
[13] de la Riva, A., González, F.M., Llamas-Elvira, J.M., Latre, J.M., Jimenez-Heffernan, A., Vidal, E., et al. (1992) Diagnosis of Brain Death: Superiority of Perfusion Studies with 99Tcm-HMPAO over Conventional Radionuclide Cerebral Angiography. British Journal of Radiology, 65, 289-294.
[14] Petty, G.W., Mohr, J.P., Pedley, T.A., Tatemichi, T.K., Lennihan, L., Duterte, D.I. and Sacco, R.L. (1990) The Role of Transcranial Doppler in Confirming Brain Death: Sensitivity, Specificity, and Suggestions for Performance and Interpretation. Neurology, 40, 300.
[15] Dupas, B., Gayet-Delacroix, M., Villers, D., Antonioli, D., Veccherini, M.F. and Soulillou, J.P. (1998) Diagnosis of Brain Death Using Two-Phase Spiral CT. American Journal of Neuroradiology, 19, 641-647.
[16] Momose, T., Nishikawa, J., Watanabe, T., Ohtake, T., Sasaki, Y., Sasaki, M. and Mii, K. (1992) Clinical Application of 18F-FDG-PET in Patients with Brain Death. Kaku Igaku Japanese Journal of Nuclear Medicine, 29, 1139-1142.
[17] Garde, K., Mortensen, A.C., Toft, P.B., Sorensen, M.B., Madsen, F.F. and Henriksen, O. (1994) Phosphorus and Proton Spectroscopy in Relation to Near Incarceration and Incarceration of the Human Brain. Acta Radiologica, 35, 197-200.
[18] Wijdicks, E.F.M. (2001) The Diagnosis of Brain Death. New England Journal of Medicine, 344, 1215-1221.
[19] Nau, R., Prange, H.W., Klingelhofer, J., Kukowski, B., Sander, D., Tchorsch, R. and Rittmeyer, K. (1992) Results of Four Technical Investigations in Fifty Clinically Brain Dead Patients. Intensive Care Medicine, 18, 82-88.
[20] Shemie, S.D., Doig, C., Dickens, B., Byrne, P., Wheelock, B., Rocker, G., et al. (2006) Severe Brain Injury to Neurological Determination of Death: Canadian Forum Recommendations. Canadian Medical Association Journal, 174, S1-S12.
[21] Okuyaz, C., Gücüyener, K., Karabacak, N.I., AydIn, K., SerdaroGlu, A. and Cingi, E. (2004) Tc-99m-HMPAO SPECT in the Diagnosis of Brain Death in Children. Pediatrics International, 46, 711-714.
[22] Munari, M., Zucchetta, P., Carollo, C., Gallo, F., De Nardin, M., Marzola, M.C., Ferretti, S. and Facco, E. (2005) Confirmatory Tests in the Diagnosis of Brain Death: Comparison between SPECT and Contrast Angiography. Critical Care Medicine, 33, 2068-2073.
[23] Weckesser, M. and Schober, O. (1999) Brain Death Revisited: Utility Confirmed for Nuclear Medicine. European Journal of Nuclear Medicine, 26, 1387-1391.
[24] Young, G.B. and Lee, D. (2004) A Critique of Ancillary Tests for Brain Death. Neurocritical Care, 1, 499-508.
[25] Rodriguez, R.A., Cornel, G., Alghofaili, F., Hutchison, J. and Nathan, H.J. (2002) Transcranial Doppler during Suspected Brain Death in Children: Potential Limitation in Patients with Cardiac Shunt. Pediatric Critical Care Medicine, 3, 153-157.
[26] Dominguez-Roldan, J.M., Jimenez-Gonzalez, P.I., Garcia-Alfaro, C., Hernandez-Hazanas, F., Murillo-Cabezas, F. and Perez-Bernal, J. (2004) Identification by CT Scan of Ischemic Stroke Patients with High Risk of Brain Death. Transplantation Proceedings, 36, 2562-2563.
[27] Wijdicks, E.F. (2002) Brain Death Worldwide: Accepted Fact but No Global Consencus in Diagnostic Criteria. Neurology, 58, 20-25.
[28] Quality Standards Subcommittee of the American Academy of Neurology (1995) Practice Parameters for Determining Brain Death in Adults (Summary Statement). Neurology, 45, 1012-1014.
[29] Orrison, W.W., Champlin, A.M., Kesterson, O.L., Hartshorne, M.F. and King, J.N. (1994) MR “Hot Nose Sign” and “Intravascular Enhancement Sign” in Brain Death. AJNR American Journal of Neuroradiology, 15, 913-916.
[30] Ishii, K., Onuma, T., Kinoshita, T., Shiina, G., Kameyama, M. and Shimosegawa, Y. (1996) Brain Death: MR and MR Angiography. AJNR American Journal of Neuroradiology, 17, 731-735.
[31] Brant-Zawadzki, M. (1990) Routine MR Imaging of the internal Carotid Artery Siphon: Angiographic Correlation with Cervical Carotid Lesions. American Journal of Neuroradiology, 11, 467-471.
[32] Karantanas, A.H., Hadjigeorgiou, G.M., Paterakis, K., Sfiras, D. and Komnos, A. (2002) Contribution of MRI and MR Angiography in Early Diagnosis of Brain Death. European Radiology, 12, 2710-2716.
[33] Schaefer, P.W., Buonanno, F.S., Gonzalez, R.G. and Schwamm, L.H. (1997) Diffusion-Weighted Imaging Discriminates between Cytotoxic and Vasogenic Edema in a Patient with Eclampsia. Stroke, 28, 1082-1085.
[34] Engelbrecht, V., Scherer, A., Rassek, M., Witsack, H.J. and Modder, U. (2002) Diffusion-Weighted MR Imaging in the Brain in Children: Findings in the Normal Brain and in the Brain with White Matter Diseases. Radiology, 222, 410-418.
[35] Forbes, K.P., Pipe, J.G. and Bird, C.R. (2002) Changes in Brain Water Diffusion during the 1st Year of Life. Radiology, 222, 405-409.
[36] Tanner, S.F., Ramenghi, L.A., Ridgway, J.P., Berry, E., Saysell, M.A., Martinez, D., et al. (2000) Quantitative Comparison of Intrabrain Diffusion in Adults and Preterm and Term Neonates and Infants. American Journal of Roentgenology, 174, 1643-1649.
[37] Karadeniz Bilgili, Y.M., ünal, B., Kendi, T., Simflir, I., Erdal, H., Huvaj, S., Kara, S. and Bademci, G. (2004) MRG ile normal gorünümlü beyaz ve gri cevherde yaslanmanin etkilerinin ADC degerleri ile saptanabilirligi. Tanisal ve Giriflimsel Radyoloji, 10, 4-7.
[38] Jakob, P.M., et al. (1997) Single-Shot Diffusion Weighted Imaging of the Brain with HASTE. In: Oudkerk, M. and Edelman, R., Eds., High-Power Gradient MR-Imaging Advances in MRI. II, Blackwell Science, London, 177-181.
[39] Hoehn-Berlage, M., Norris, D.G., Kohno, K., Mies, G., Leibfritz, D. and Hossmann, K.A. (1995) Evolution of Regional Changes in Apparent Diffusion Coefficient during Focal Ischemia of Rat Brain: The Relationship of Quantitative Diffusion NMR Imaging to Reduction in Cerebral Blood Flow and Metabolic Disturbance. Journal of Cerebral Blood Flow & Metabolism, 15, 1002-1011.
[40] Moseley, M.E., Cohen, Y., Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., et al. (1990) Early Detection of Regional Cerebral Ischemia in Cats: Comparison of Diffusion- and T2-Weighted MRI and Spectroscopy. Magnetic Resonance in Medicine, 14, 330-346.
[41] Rother, J., de Crespigny, A.J., D’Arceuil, H. and Moseley, M.E. (1996) MR Detection of Cortical Spreading Depression Immediately after Focal Ischemia in the Rat. Journal of Cerebral Blood Flow & Metabolism, 16, 214-220.
[42] Baird, A.E. and Warach, S. (1998) Magnetic Resonance Imaging of Acute Stroke. Journal of Cerebral Blood Flow & Metabolism, 18, 583-609.
[43] Schlaug, G., Siewert, B., Benfield, A., Edelman, R.R. and Warach, S. (1997) Time Course of the Apparent Diffusion Coefficient (ADC) Abnormality in Human Stroke. Neurology, 49, 113-119.
[44] Nakahara, M., Ericson, K. and Bellander, B.M. (2001) Diffusion-Weighted MR and Apparent Diffusion Coefficient in the Evaluation of Severe Brain Injury. Acta Radiologica, 42, 365-369.
[45] Kumada, K., Fukuda, A., Yamane, K., Horiuchi, I., Kohama, A., Hirano, K. and Onoda, T. (2001) Diffusion-Weighted Imaging of Brain Death: Study of Apparent Diffusion Coefficient. Nō to Shinkei, 53, 1027-1031.
[46] Sener, R.N. (2004) Diffusion MRI in the Postmortem Brain: Case Report. Journal of Neuroradiology, 31, 406-408.
[47] McKinney, A.M., Teksam, M., Felice, R., Casey, S.O., Cranford, R., Truwit, C.L. and Kieffer, S. (2004) Diffusion-Weighted Imaging in the Setting of Diffuse Cortical Laminar Necrosis and Hypoxic-Ischemic Encephalopathy. American Journal of Neuroradiology, 25, 1659-1665.
[48] Beauchamp, N.J., Ulug, A.M., Passe, T.J. and van Zijl, P.C. (1998) MR Diffusion Imaging in Stroke: Review and Controversies. RadioGraphics, 18, 1269-1283.
[49] Karonen, J.O., Liu, Y., Vanninen, R.L., Ostergaard, L., Kaarina Partanen, P.L., Vainio, P.A., et al. (2000) Combined Perfusion- and Diffusion-Weighted MR imaging in Acute ischemic Stroke during the First Week: A Longitudinal Study. Radiology, 217, 886-894.
[50] Miyasaka, N., Kuroiwa, T., Zhao, F.Y., Nagaoka, T., Akimoto, H., Yamada, I., et al. (2000) Cerebral Ischemic Hypoxia: Discrepancy between Apparent Diffusion Coefficients and Histologic Changes in Rats. Radiology, 215, 199-204.
[51] Hassankhani, A., et al. (2001) Value of Diffusion Weighted Imaging in Predicting the Final Size of Ischemic Core Following Thrombolysis. In: Book of Abstracts: 87th Scientific Assembly of the Radiological Society of North American, Chicago, 25-30 November 2001.
[52] Schaefer, P.W., Hassankhani, A., Putman, C., Sorensen, A.G., Schwamm, L., Koroshetz, W. and Gonzalez, R.G. (2004) Characterization and Evolution of Diffusion MR Imaging Abnormalities in Stroke Patients Undergoing Intra-Arterial Thrombolysis. American Journal of Neuroradiology, 25, 951-957.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.