Biotechnological Alternatives for the Utilization of Dairy Industry Waste Products

DOI: 10.4236/abb.2015.63022   PDF   HTML   XML   4,985 Downloads   6,881 Views   Citations


The industrial obtainment and manufacturing of food cause high levels of pollution because of the generation of waste byproducts. Over the past few years, there has been a significantly increased interest in preserving, restoring and establishing an ecological balance during food production. Many investigators propose biotechnological solutions to the treatment of industrial wastes, especially waste from the dairy industry. The aim of this review is to present biotechnological approaches to the treatment and utilization of wastes from the dairy industry, specifically for milk whey and also discussed biotechnological methods to reduce environmental pollution and obtain chemical compounds with potential applications in the industry.

Share and Cite:

De Jesus, C. , Elba Ruth, V. , Daniel, S. and Sharma, A. (2015) Biotechnological Alternatives for the Utilization of Dairy Industry Waste Products. Advances in Bioscience and Biotechnology, 6, 223-235. doi: 10.4236/abb.2015.63022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Park, Y.W., Marnet, P.G., Yart, L. and Haenlein, G.F. (2013) Mammary Secretion and Lactation, In: Park, Y.W. and Haenlein, G.F., Eds., Milk and Dairy Products in Human Nutrition: Production, Composition and Health, Wiley, Blackwell, 31-45.
[2] Ramani, W.-B. and Barbara, B. (2013) Milk and Dairy Product Composition. In: Muehlhoff, E., Bennett, A. and McMahon, D., Eds., Milk and Dairy Products in Human Nutrition, Food and Agriculture Organization of the United Nations, Chapter 3, 42-102. Accessed 23-07-2014
[3] Schaafsma, G. (2008) Lactose and Lactose Derivates as Bioactive Ingredients in Human Nutrition. International Dairy Journal, 18, 458-465.
[4] El-Loly, M.M. (2011) Composition, Properties and Nutritional Aspects of Milk Fat Globule Membrane: A Review. Polish Journal of Food and Nutrition Sciences, 61, 7-32.
[5] Gordon, M.H. (2013) Milk Lipids. In: Park, Y.W. and Haenlein, G.F., Eds., Milk and Dairy Products in Human Nutrition: Production, Composition and Health, Wiley, Blackwell, 65-79.
[6] Cashman, K.D. (2006) Milk Minerals (Including Trace Elements) and Bone Health. International Dairy Journal, 16, 1389-1398.
[7] Secretaría de economía México (SE) (2012) Dirección general de industrias básicas. Análisis del sector lácteo en México. Análisis del Sector Lácteo en México.
[8] CDICa. The Canadian Dairy Information Centre (2014) Global Consumption of Dairy Products by Country (Annual).
[9] Badui Dergal, S. (2006) Química de los alimentos. Pearson Educación, México, 603-617.
[10] Papademas, P. and Bintsis, T. (2010) Food Safety Management Systems (FSMS) in the Dairy Industry: A Review. International Journal of Dairy Technology, 63, 489-503.
[11] CDICb. The Canadian Dairy Information Centre (2014) Global Consumption of Dairy Products by Country (Annual).
[12] CDICc. The Canadian Dairy Information Centre (2014) Global Consumption of Dairy Products by Country (Annual).
[13] Ostojic, S., Pavlovic, M., Zivic, M., Filipovic, Z., Gorjanovic, S., Hranisavljevic, S. and Dojcinovic, M. (2005) Processing of Whey from Dairy Industry Waste. Environmental Chemistry Letters, 3, 29-32.
[14] Feng, GL., Letey, J., Chang, AC. and Campbell, MM. (2005) Simulatin Dairy Liquid Waste Management Options as a Nitrogen Source for Crops. Agriculture, Ecosystems and Environment, 110, 219-229.
[15] Valencia, E. and Ramírez, M.L. (2009) La industria de la leche y la contaminación del agua. Elementos: Ciencia y Cultura, 73, 27-31.
[16] Place, S.E. and Mitloehner, F.M. (2010) Contemporary Environmental Issues: A Review of the Dairy Industry’s Role in Climate Change and Air Quality and the Potential of Mitigation through Improved Production Efficiency. Journal Dairy Science, 93, 3407-3416.
[17] Smithers, G.W. (2008) Whey and Whey Proteins—From “Gutter-to-Gold”. International Dairy Journal, 18, 695-704.
[18] Morales, J., Choi, J.S. and Kim, D.S. (2006) Production Rate of Propionic Acid in Fermentation of Cheese Whey with Enzyme Inhibitors. Environmental Progress, 25, 228-234.
[19] Parra Huertas, R.A. (2009) Whey: Importance in the Food Industry. Revista Facultad Nacional de Agronomia Medellin, 62, 4967-4982.
[20] Tovar, J.X., Téllez, J.A., Mercado, F.Y., Abreu, C.A., Muro, U.C., Gómez, A.C.A. and Arana, C.A. (2013) Suero lácteo Solo un residuo o una oportunidad? Ciencia y Desarrollo, 39, 64-69.
[21] Poopathi, S. and Abidha, S. (2012) The Use of Clarified Butter Sediment Waste from Dairy Industries for the Production of Mosquitocidal Bacteria. International Journal of Dairy Technology, 65, 152-157.
[22] Kothari, R., Pathak, V.V., Kumar, V. and Singh, D.P. (2012) Experimental Study for Growth Potential of Unicellular Alga Chlorella pyrenoidosa on Dairy Waste Water: An Integrated Approach for Treatment and Biofuel Production. Bioresource Technology, 116, 466-470.
[23] Neal, C. and Jarvie, H.P. (2005) Agriculture, Community, River Eutrophication and the Water Framework Directive. Hydrological Process, 19, 1895-1901.
[24] Dokulil, M.T. and Teubner, K. (2011) Eutrophication and Climate Change: Present Situation and Future Scenarios. In: Ansari, A.A., Sarvajeet, S.G., Lanza, G.R. and Rast, W., Eds., Eutrophication: Causes, Consequences and Control, Springer, Dordrecht, Heidelberg, London, New York, 1-16.
[25] Tsagaraki, E., Lazarides, H. and Petrotos, K. (2007) Olive Mill Wastewater. In: Oreopoulou, V. and Russ, W., Eds., Utilisation of By-Products and Treatment of Waste in the Food Industry, Springer, New York, 133-157.
[26] Aouidi, F., Khelifi, E. and Asses, N. (2010) Use of Cheese Whey to Enhance Geotrichum candidum Biomass Production in Olive Mill Wastewater. Journal of Industrial Microbiology and Biotechnology, 37, 877-882.
[27] Páez, G., Jiménez, E., Mármol, Z., Ferrer, J., Sulbarán, B., Ojeda, G., Araujo, K. and Rincón, M. (2008) Perfil de aminoácidos de la proteína unicelular de Kluyveromyces marxianus var marxianus. Interciencia, 33, 297-300.
[28] Pandian, S.R., Deepak, V., Kalishwaralal, K., Rameshkumar, N., Jeyaraj, M. and Gurunathan, S. (2010) Optimization and Fed-Batch Production of PHB Utilizing Dairy Waste and Sea Water as Nutrient Sources by Bacillus megaterium SRKP-3. Bioresource Technology, 101, 705-711.
[29] Pandian, S.R., Deepak, V., Kalishwaralal, K., Jeyaraj, M., Rameshkumar, N. and Gurunathan, S. (2009) Synthesis of PHB Nanoparticles from Optimized Medium Utilizing Dairy Industrial Waste Using Brevibacterium casei SRKP2: A Green Chemistry Approach. Colloids Surf B: Biointerfaces, 74, 266-273.
[30] Barnwal, B.K. and Sharma, M.P. (2005) Prospects of Biodiesel Production from Vegetable Oils in India. Renewable and Sustainable Energy Reviews, 9, 363-378.
[31] Sivakumar, P., Anbarasu, K. and Renganathan, S. (2011) Bio-Diesel Production by Alkali Catalyzed Transesterification of Dairy Waste Scum. Fuel, 90, 147-151.
[32] Parrondo, J., García, L.A. and Díaz, J.M. (2000) Production of an Alcoholic Beverage by Fermentation of Whey Permeate with Kluyveromyces fragilis I: Primary Metabolism. Journal of the Institute of Brewing, 106, 367-376.
[33] Padín González, C. and Díaz Fernández, M. (2006) Efecto de la concentración inicial del lactosuero sobre la fermentación alcohólica con Kluyveromyces fragilis. Revista de la Sociedad Venezolana de Microbiologia, 26, 35-41.
[34] Ozmihci, S. and Kargi, F. (2007) Kinetics of Batch Ethanol Fermentation of Cheese-Whey Powder (CWP) Solution as Function of Substrate and Yeast Concentrations. Bioresource Technology, 98, 2978-2984.
[35] Minakshi, D. and Shilpa, V. (2012) Comparative Analysis of Bioethanol Production from Whey by Different Strains of Immobilized Thermotolerant Yeast. International Journal Scientific Research Public, 2, 1-5.
[36] Foda, M.I., Dong, H. and Li, Y. (2010) Study the Suitability of Cheese Whey for Bio-Butanol Production by Clostridia. Journal of American Science, 6, 39-46.
[37] Mathuriya, A.S. and Sharma, V.N. (2009) Bioelectricity Production from Various Wastewaters through Microbial Fuel Cell Technology. Journal Biochemical of Technology, 1, 133-137.
[38] Najafpour, G.D., Rahimnejad, M., Mokhtarian, N., Daud, W.R.W. and Ghoreyshi, A.A. (2010) Bioconversion of Whey to Electrical Energy in a Biofuel Cell Using Saccharomyces cerevisiae. World Applied Sciences Journal, 8, 1-5.
[39] Nasirahmadi, S. and Safekordi, A.A. (2011) Whey as a Substrate for Generation of Bioelectricity in Microbial Fuel Cell Using E. coli. International Journal of Environmental Science and Technology, 8, 823-830.
[40] Venkata, M.S., Lalit, B.V. and Sarma, P.N. (2008) Effect of Various Pretreatment Methods on Anaerobic Mixed Microflora to Enhance Biohydrogen Production Utilizing Dairy Wastewater as Substrate. Bioresource Technology, 99, 59-67.
[41] Thangaraj, A. and Kulandaivelu, G. (1994) Biological Hydrogen Photoproduction Using Dairy and Sugarcane Waste Waters. Bioresource Technology, 48, 9-12.
[42] Kothari, R., Pathak, V.V., Kumar, V. and Singh, D.P. (2012) Experimental Study for Growth Potential of Unicellular Alga Chlorella pyrenoidosa on Dairy Waste Water: An Integrated Approach for Treatment and Biofuel Production. Bioresource Technology, 116, 466-470.
[43] Anderson, T.M., Bodie, E.A., Goodman, N. and Schwartz, R.D. (1986) Inhibitory Effect of Autoclaving Whey-Based Medium on Propionic Acid Production by Propionibacterium shermanii. Applied and Environmental Microbiology, 51, 427-428.
[44] Woskow, S.A. and Glatz, B.A. (1991) Propionic Acid Production by a Propionic Acid-Tolerant Strain of Propionibacterium acidipropionici in Batch and Semicontinuous Fermentationt. Applied and Environmental Microbiology, 57, 2821-2828.
[45] Sánchez Toro, ó.J., Ortiz Buriticá, M.C. and Betancourt Garcés, A.L. (2004) Citric Acid Production from Whey by Fermentation Using Aspergillus spp. Revista Colombiana de Biotecnologia, 6, 43-54.
[46] Wan, C., Li, Y., Shahbazi, A. and Xiu, S. (2008) Succinic Acid Production from Cheese Whey Using Actinobacillus succinogenes 130Z. Applied Biochemistry and Biotechnology, 145, 111-119.
[47] Alonso, S., Herrero, M., Rendueles, M. and Díaz, M. (2010) Residual Yoghurt Whey for Lactic Acid Production. Biomass and Bioenergy, 34, 931-938.
[48] El-Holi, M.A. and Al-Delaimy, K.S. (2003) Citric Acid Production from Whey with Sugars and Additives by Aspergillus niger. African Journal of Biotechnology, 2, 356-359.
[49] Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A., Marchant, R. and Banat, I.M. (2008) Lactic Acid Production by Mixed Cultures of Kluyveromyces marxianus, Lacto-bacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresource Technology, 99, 5951-5955.
[50] Gutiérrez, L.-F., Hamoudi, S. and Belkacemi, K. (2012) Lactobionic Acid: A High Value-Added Lactose Derivative for Food and Pharmaceutical Applications. International Dairy Journal, 26, 103-111.
[51] Vlad-Cristea, M.S. (2007) Production of Bioactive Lactobionic Acid Using a Novel Catalytic Method. M.Sc. Dissertation, Université Laval Québec, Québec, 1-102.
[52] Miyamoto, Y., Ool, T. and Kinoshita, S. (2000) Production of Lactobionic Acid from Whey by Pseudomonas sp. LS13-1. Biotechnology Letters, 22, 427-430.
[53] Alonso, S., Rendueles, M. and Díaz, M. (2011) Efficient Lactobionic Acid Production from Whey by Pseudomonas taetrolens under pH-Shift Conditions. Bioresource Technology, 102, 9730-9736.
[54] Maddox, I.S. and Richert, S.H. (1977) Production of Gibberellic Acid Using a Dairy Waste as the Basal Medium. Applied and Environment Microbiology, 33, 201-202.
[55] Mukherjee, S., Das, P. and Sen, R. (2006) Towards Commercial Production of Microbial Surfactants. Trends Biotechnology, 24, 509-515.
[56] Rodrigues, L., Banat, I.M., Teixeira, J. and Oliveira, R. (2006) Biosurfactants: Potential Applications in Medicine. Journal of Antimicrobial Chemotherapy, 57, 609-618.
[57] Saharan, B.S., Sahu, R.K. and Sharma, D. (2011) A Review on Biosurfactants: Fermentation, Current Developments and Perspectives. Genetic Engineering & Biotechnology Journal, 2011, 1-14.
[58] Daverey, A., Pakshirajan, K. and Sangeetha. P. (2009) Sophorolipids Production by Candida bombicola Using Synthetic Dairy Wastewater. International Scholarly and Scientific Research and Innovation, 3, 466-468.
[59] Gomaa, E.Z. (2013) Antimicrobial Activity of a Biosurfactant Produced by Bacillus licheniformis Strain M104 Grown on Whey. Brazilian Archives of Biology and Technology, 56, 259-268.
[60] Colak, A.K. and Kahraman, H. (2013) The Use of Raw Cheese Whey and Olive Oil Mill Wastewater for Rhamnolipid Production by Recombinant Pseudomonas aeruginosa. Environmental and Experimental Biology, 11, 125-130.
[61] Fuentes, á., Carreño, C. and Llanos, C. (2013) Yield Emulsifiers Exopolysaccharides Produced by Native Halophilic Bacteria Concentrations Molasses Three Saccharum officinarum L. “Sugarcane”. Scientia Agropecuaria, 4, 111-120.
[62] Wilches Flórez, A.M. (2005) Estudio genético preliminar de bacterias ácido lácticas productoras de exopolisacáridos (EPS). Bistua: Revista de la Facultad de Ciencias Básicas, 3, 12-18.
[63] Tiehua, Z., Chunhong, Z., Shengyu, L., Yanchun, Z. and Zhennai, Y. (2011) Growth and Exopolysaccharide Production by Streptococcus thermophilus ST1 in Skim Milk. Brazilian Journal of Microbiology, 42, 1470-1478.
[64] Amjres, H., Béjar, V., Quesada, E., Abrini, J. and Llamas, I. (2010) Pharmaceutical Applications of the Exopolysaccharides Produced by Halomonas nitroreducens Strain HK30. ARS Pharmaceutica, 51, 255-266.
[65] Briczinski, E.P. and Roberts, R.F. (2002) Production of an Exopolysaccharide-Containing Whey Protein Concentrate by Fermentation of Whey. Journal of Dairy Science, 85, 3189-3197.
[66] Ricciardi, A., Parente, E., Crudele, M.A., Zanetti, F., Scolari, G. and Mannazzu. I. (2002) Exopolysaccharide Production by Streptococcus thermophilus SY: Production and Preliminary Characterization of the Polymer. Journal of Applied of Microbiology, 92, 297-306.
[67] Baró, L., Jiménez, J., Martínez-Férez, A. and Bouza, J.J. (2001) Bioactive Milk Peptides and Proteins. ARS Pharmaceutica, 42, 135-145.
[68] Krissansen, G.W. (2007) Emerging Health Properties of Whey Proteins and Their Clinical Implications. Journal of American College of Nutrition, 26, 713S-723S.
[69] Madureira, A., Pereira, C., Gomes, A., Pintado, M. and Malcata, F. (2007) Bovine Whey Proteins—Overview on Their Main Biological Properties. Food Research International, 40, 1197-1211.
[70] Haque, E. and Chand, R. (2008) Antihypertensive and Antimicrobial Bioactive Peptides from Milk Proteins. European Food Research Technology, 227, 7-15.
[71] Alvarado-Carrasco, C. and Guerra, M. (2010) Lactosuero como fuente de péptidos bioactivos. Anales Venezolanos de Nutrición, 23, 42-49.
[72] Mulero, C.J., Zafrilla, R.P., Martínez-Cachá Martínez, A., Leal, H.M. and Abellán, A.J. (2011) Péptidos Bioactivos. Clínica e Investigacion en Arteriosclerosis, 23, 219-227.
[73] Korhonen, H. and Pihlanto, A. (2006) Bioactive Peptides: Production and Functionality. International Dairy Journal, 16, 945-960.
[74] Korhonen, H. (2009) Milk-Derived Bioactive Peptides: From Science to Applications. Journal of Functional Foods, 1, 177-187.
[75] Corrons, M.A., Bertucci, J.I., Liggieri, C.S., López, L.M.I. and Bruno, M.A. (2012) Milk Clotting Activity and Production of Bioactive Peptides from Whey Using Maclura pomifera Proteases. Food Science and Technology, 47, 103-109.
[76] Narva, M. (2004) Effects of Lactobacillus helveticus Fermented Milk and Milk-Derived Bioactive Peptides (CPP, IPP and VPP) on Calcium and Bone Metabolism. Helsinki, Finland. Doctoral Dissertation, Institute of Biomedicine, Pharmacology University of Helsinki, 83.
[77] Reyes-Nava, L.A., Briones-Martínez, R. and Cortés-Vázquez, M.I. (2006) Funcionalidad de péptidos catiónicos y aniónicos producidos por hidrólisis enzimática de proteínas de suero lácteo. V Memories international congress of biochemical engineering, XVI National congress of biochemical engineering, VI Scientific Conference of Molecular Biomedicine and Biotechnology. VI JC de Biomedicina, B Molecular. Tuxtla Gutiérrez Chiapas, México.
[78] Alvarado-Carrasco, C., Gómez-Ruiz, J. and Guerra M. (2012) Actividad inhibidora de la enzima convertidora de la angiotensina de un hidrolizado de lactosuero de cabra con proteasa de Aspergillus oryzae.
[79] Santana de Souza, M.W., Rolim Biasutti, E.A., Linhares Carreira, R. and Oliveira Afons, W. (2008) Obtaining Oligopeptides from Whey: Use of Subtilisin and Pancreatin. American Journal of Food Technology, 3, 315-324.
[80] Antonio, G., Fernando, C. and Emilia, M.G. (2006) Production of Whey Protein Hydrolysates with Reduced Allergenicity in a Stable Membrane Reactor. Journal of Food Engineering, 72, 398-405.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.