Soil Biological and Biochemical Responses to Cd Exposure
R. Ebhin Masto, Rajkumar Ahirwar, Joshy George, L. C. Ram, V. A. Selvi
DOI: 10.4236/ojss.2011.11002   PDF   HTML     5,069 Downloads   11,463 Views   Citations


Heavy metals can stimulate the activity of soil enzymes in smaller amounts, but act as inhibitors if present in high concentrations. Natural and anthropogenic heavy metal contamination and its disturbances on soils can be evaluated by using enzymatic activities as sensors. To study the effects of Cd, soil added with known Cd concentrations (0, 10, 20, 50,100 and 200 mg/kg soil) were incubated for a period of 30 days at 28℃. At intervals of 0, 5, 10, 20 and 30 days samples were withdrawn for enzyme assays like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidise (PER). In a separate experiment the effect of Cd on active microbial biomass carbon (AMBC), basal soil respiration (BSR), and metabolic quotient were studied. AMBC showed a reduction trend with increase in Cd concentration, and a maximum reduction of 47% was observed at 30th day for 200 mg/kg treatment. BSR also has got the same trend, with a maximum decrease of 42% at the 30th day. With the rate of Cd amendments and treatment period, DHA has shown an inhibition trend; whereas maximum decrease was observed for 200 mg/kg treatment at 30th day. CAT, PER, and PHE were found to be increased with Cd addition and remained at higher levels than in the control soil. These changes can be attributed to the effect of Cd on microbial activities. Based on cluster analysis, AMBC appears to be the sensitive indicators for the soil exposed to Cd contamination.

Share and Cite:

R. Masto, R. Ahirwar, J. George, L. Ram and V. Selvi, "Soil Biological and Biochemical Responses to Cd Exposure," Open Journal of Soil Science, Vol. 1 No. 1, 2011, pp. 8-15. doi: 10.4236/ojss.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Anderson, T. H., & Domsch, K. H. (1990). Application of eco-phy- siological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22, 251-255. doi:10.1016/0038-0717(90)90094-G
[2] Anderson, T. H., & Domsch, K. H. (1986). Carbon assimilation and microbial activity in soil. Zeitschrift für Pflanzenern?rung und Bo-denkunde, 149, 457-468. doi:10.1002/jpln.19861490409
[3] Bardgett, R. D., & Saggar, S. (1994). Effects of heavy metal contamination on the short-term decomposition of labelled [14C] glucose in a pasture soil. Soil Biology and Biochemistry, 26, 727-733. doi:10.1016/0038-0717(94)90265-8
[4] Bhattacharyya, P., Tripathy, S., Chakrabarti, K., Chakraborty, A., & Banik, P. (2008). Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil. Chemosphere, 72, 543-550. doi:10.1016/j.chemosphere.2008.03.035
[5] Bramley, R. V. (1990). Cadmium in New Zealand agriculture. New Zealand Journal of Agric Research, 33, 505-519.
[6] Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy etals. Biology and Fertility of Soils, 19, 269-279. doi:10.1007/BF00336094
[7] Brookes, P. C., & McGrath, S. P. (1984). Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 35, 341-346. doi:10.1111/j.1365-2389.1984.tb00288.x
[8] Chander, K., & Brookes, P. C. (1991). Microbial biomass dynamics during the decomposition of glucose and maize in metal-contami- nated and non-contaminated soils. Soil Biology and Biochemistry, 23, 917-925. doi:10.1016/0038-0717(91)90171-F
[9] Chaoui, A., Mazhoudi, S., Ghorbal, M. H., & Ferjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 127, 139-147. doi:10.1016/S0168-9452(97)00115-5
[10] Christensen, G. M., Olson, D., & Riedel, B. (1982). Chemical effects on the activity of eight enzymes. A review and a discussion relevant to environmental monitoring. Environmental Research, 29, 247-254. doi:10.1016/0013-9351(82)90026-3
[11] Cui, Y., & Wang, Q. (2006). Physiological responses of maize to elemental sulphur and cadmium stress. Plant, Soil and Environment, 52, 523-529.
[12] Dahlin S., Witter E., Martensson A., Turner A., & Baath A. (1997). Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biology & Biochemistry, 29, 1405-1415. doi:10.1016/S0038-0717(97)00048-5
[13] Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, and B. A. Stewart, (Eds.), Defining soil quality for a sustainable environment (pp. 3-21). Madison, WI: Soil Science Society of America.
[14] Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529- 539. doi:10.2174/1568026013394831
[15] Frankenberger, W. T. Jr., Johanson, J. B., & Nelson, C. O. (1983). Urease activity in sewage sludge-amended soils. Soil Biology and Biochemistry, 15, 543-551. doi:10.1016/0038-0717(83)90048-2
[16] Fritze, H., Perkiomaki, J., & Saarela, U. (2000). Effect of Cd containing wood ash on the microflora of coniferous forest humus. FEMS Microbiology Ecology, 32, 43-51. doi:10.1111/j.1574-6941.2000.tb00697.x
[17] Gallego, S. M., Benavides, M. P., & Tomaro, M. L. (1999). Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biology Plant, 42, 49-55. doi:10.1023/A:1002159123727
[18] Giller, K. E., Beare, M. H., Lavelle, P., Izac, A. M. N., & Swift, M. J. (1997). Agricultural intensification, soil bio-diversity and ecosystem function. Applied Soil Ecology, 6, 3-16. doi:10.1016/S0929-1393(96)00149-7
[19] Giller, K., Witter, E., & McGrath, S. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1398-1414. doi:10.1016/S0038-0717(97)00270-8
[20] Griffiths, B., Díaz-Ravi?a, M., Ritz, K., McNicol, J., Ebblewhite, N., & Baath, E. (1997). Community DNA hybridisation and communities from heavy metal polluted soils. FEMS Microbiology Ecology, 24, 103-112. doi:10.1111/j.1574-6941.1997.tb00427.x
[21] Huang, C. Y., & Khan, K. S. (1998). Effects of cadmium, lead and their interaction on the size of microbial biomass in a red soil. Soil Environment, 1, 227-236.
[22] Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystem & Environment, 79, 9-16. doi:10.1016/S0167-8809(99)00145-0
[23] Kandeler, E., Tscherko, D., & Spiegel, H. (1999). Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management. Biology and Fertility of Soils, 28, 343-351. doi:10.1007/s003740050502
[24] Karacaa, A., David, C. N., & James, M. L. (2002). Effect of cadmium-contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium. Biology and Fertility of Soils, 5, 428-434. doi:10.1007/s00374-002-0490-4
[25] Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi-current perspective. Archives of Agronomy and Soil Science, 56, 73-98. doi:10.1080/03650340902806469
[26] Klein, D. A., Loh, T. C., & Goulding, R. L. (1971). A rapid procedure to evaluate dehydrogenase activity of soils low in organic matter. Soil Biology and Biochemistry, 3, 385-387. doi:10.1016/0038-0717(71)90049-6
[27] Landi, L., Renella, G., Moreno, J., Falchini, L., & Nannipieri, P. (2000). Influence of cadmium on the metabolic quotient, L-, D-glutamine acid respiration ratio and enzyme activity, microbial biomass ratio under laboratory conditions. Biology and Fertility of Soils, 32, 8-16. doi:10.1007/s003740000205
[28] Lebedeva, L. A., Lebedev, S. N., & Edemskaya, N. L. (1995). The effect of heavy metals and lime on urease activity in soddy-podzolic soil. Moscow University Soil Science Bulletin, 50, 53-61.
[29] Loganathan, P., Hedley, M. J., Gregg, P. H., ? Currie, L. D. (1996). Effect of phosphate fertiliser type on the accumulation and plant availability of cadmium in grassland soils. Nutrient Cycling in Agroecosystems, 46, 169-178. doi:10.1007/BF00420551
[30] Maliszewska-Kordybach, B. ? Smreczak, B. (2003). Habitat function of agricultural soils affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International, 28, 719- 728. doi:10.1016/S0160-4120(02)00117-4
[31] Milosevic, N., Govedarica, M., Jarak, M., Petrovic, N., Jevtic, S., ? Lazic, B. (1997). The effect of heavy metals on total soil microbio-logical activity in lettuce. Acta Horticulture, 462, 133-142.
[32] Nannipieri, P., Badalucco, L., Landi, L., ? Pietramellara, G. (1997). Measurement in assessing the risk of chemicals to the soil ecosystem. In J. T. Zelikoff (ed)., Ecotoxicology: Responses, biomarkers and risk assessment. An OECD workshop. (pp. 507-534). Fair Haven, NJ: SOS Publications.
[33] Nannipieri, P., Gregos, S., ? Ceccanti, B. (1990). Ecological significance of the biological activity in soil. Soil Biology and Biochemistry, 6, 293-354.
[34] Pandey, N., ? Sharma, C. P. (2002). Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science, 163, 753-758. doi:10.1016/S0168-9452(02)00210-8
[35] Patra, J., ? Panda, B. B. (1998). A comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environmental Pollution, 101, 99-105. doi:10.1016/S0269-7491(98)00009-8
[36] Pereira, G. J. G., Molina, S. M. G., Lea, P. J., ? Azevedo, R. A. (2002). Activity of antioxodant enzymes in response to cadmium in crotalaria juncea. Plant and Soil, 239, 123-132. doi:10.1023/A:1014951524286
[37] Radhakrishnan, M. (2009). Effect of cadmium on catalase activity in four tissues of freshwater fish Heteropneustes fossilis. The Internet Journal of Veterinary Medicine, 7.
[38] Robertson, G. P., Coleman, D. C., Bledsoe, C. S., ? Sollin, P. (1999). Standard soil methods for long term ecological research. Oxford: Oxford University Press.
[39] Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., ? del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115-2126.
[40] Sardar, K., Qing, C., El-Latif, H. A., Yue, X., ? Ji-Zheng, H. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 19, 834-840. doi:10.1016/S1001-0742(07)60139-9
[41] Shah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161, 1135-1141. doi:10.1016/S0168-9452(01)00517-9
[42] Sparling, G. P., ? Ross, D. J. (1993). Biochemical methods to estimate soil microbial biomass: current developments and applications. In K. Mulangoy and R. Merckx (Eds), Soil organic matter dynamics and sustainability of tropical agriculture (pp. 21-37). Chichester: Wiley.
[43] Sparling, G. P. (1997). Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In C. E. Pankhurst, B. M. Doube and V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 97-119). Wallingford: CAB International.
[44] Szili-Kovács, T., Anton, A., ? Gulyás, F. (1999). Effect of Cd, Ni and Cu on some microbial properties of a calcareous chernozem soil. Proceedings of 2nd Sympossium on the Pathways and Consequences of the Dissemination of Pollutants in the Biosphere, Prague. 88-102
[45] Violeta, S. C. (2011). In-dicator microorganisms of environmental polution. Ph.D. Thesis, Babe?-Bolyai University.
[46] Wardle, D. A., ? Ghani, A. (1995). A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27, 1601-1610. doi:10.1016/0038-0717(95)00093-T
[47] Welp, G. (1999). Inhibitory effects of the total water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biology and Fertility of Soils, 30, 132-139. doi:10.1007/s003740050599
[48] Wyszkowska, J., Kucharski, J., Jastrzebska, E., & Hlasko, A. (2001). The biological properties of the soil as influenced by chromium contamination. Polish Journal of Environmental Studies, 10, 175-183
[49] Xu, G. H., Zheng, H. Y. (1986). Handbook of analysis of soil microorganisms. Beijing: Agriculture Press.
[50] Yao, H., He, Z., Wilson, M. J., ? Campbell, C. D. (2000). Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223-237.
[51] Zhang, H., Dang, Z., & Yao, L. X. (2007). Eco-toxicologic effect of cadmium and pyrene combined and simplex pollution on soil microbe. (in Chinese). Journal of Agro-Environment Science, 26, 2225- 2230.
[52] Zhang, N. L., Wan, S. Q., Li, L. H., Bi, J., Zhao, M. M., & Ma, K. P. (2008). Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant and Soil, 311, 19-28. doi:10.1007/s11104-008-9650-0
[53] Zheng, C. R., Tu, C., & Chen, H. M. (1999). Effect of combined heavy metal pollution on nitrogen mineralization potential, urease and phosphatase activities in a typic udic ferrisol. Pedosphere, 9, 251-257.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.