Share This Article:

Kinetics of Serum and Local Leukotriene B4 Response in Experimental Intravaginal Trichomoniasis by T. vaginalis Isolates from Symptomatic and Asymptomatic Women

Abstract Full-Text HTML XML Download Download as PDF (Size:1427KB) PP. 37-47
DOI: 10.4236/aid.2015.51004    2,289 Downloads   2,747 Views  

ABSTRACT

Trichomoniasis is most common sexually transmitted disease caused by T. vaginalis. The clinical manifestation varies from severe manifestation to asymptomatic condition. However, the exact virulence markers led to varied symptomatology was not well clarified. The role of leukotriene B4 (LTB4) in the pathogenesis of many parasitic diseases has been reported. The present study reports the leukotriene B4 levels on different days post infection (3rd, 7th, 14th, 21st and 28th d.p.i.) in serum and vaginal washes (VWs) and vaginal tissues of mice infected intravaginally with T. vaginalis isolates from 10 symptomatic and 10 asymptomatic women. A significant increase in LTB4 was observed on the 3rd to 28th d.p.i. in serum and VWs of mice infected with T. vaginalis isolates from asymptomatic as compared to symptomatic women. The present study also reports the histopathological changes of the posterior vaginal fornix’s and upper portion of the vagina of mice infected intravaginally with T. vaginalis isolates from 10 symptomatic and 10 asymptomatic women. The results show that there are no significant differences between symptomatic and asymptomatic isolates regarding histopathological changes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Eida, A. , Eida, O. and Salem, A. (2015) Kinetics of Serum and Local Leukotriene B4 Response in Experimental Intravaginal Trichomoniasis by T. vaginalis Isolates from Symptomatic and Asymptomatic Women. Advances in Infectious Diseases, 5, 37-47. doi: 10.4236/aid.2015.51004.

References

[1] World Health Organization (1995) An Overview of Selected Curable Sexually Transmitted Diseases. WHO/AIDS, 2-26.
[2] Riley, D.E., Roberts, M.C., Takayama, T. and Krieger, J.N. (1992) Development of A Polymerase Chain Reaction-Based Diagnosis of Trichomonas vaginalis. Journal of Clinical Microbiology, 30, 465-472.
[3] El-Shazly, A.M., El-Naggar, H.M., Soliman, M., El-Negeri, M., El-Nemr, H.E., Handousa, A.E. and Morsy, T.A. (2001) Study on Trichomoniasis vaginalis and Female Infertility. Journal of the Egyptian Society of Parasitology, 31, 545-553.
[4] Vikki, M., Pukkala, E., Nieminen, P. and Hakam, A. (2000) Gynecological Infections as Risk Determinants of Subsequent Cervical Neoplasia. Acta Oncologica, 39, 71-74.
http://dx.doi.org/10.1080/028418600431003
[5] Warton, A. and Honigberg, B.M. (1993) Analysis of Surface Saccharids in Trichomonas vaginalis Strains with Various Pathogenicity Levels by Fluorescein-Conjugated Plant Lectins. Z Parasitenkd, 69, 149-159.
http://dx.doi.org/10.1007/BF00926951
[6] Kaul, P., Gupta, I., Sehgal, R. and Malla, N. (2004) Trichomonas vaginalis: Random Amplified Polymorphic DNA Analysis of Isolates from Symptomatic and Asymptomatic women in India. Parasitology International, 53, 255-262.
http://dx.doi.org/10.1016/j.parint.2004.02.003
[7] Eida, A. and Eida, M. (2010) Genetic Analysis of Egyptian Trichomonas vaginalis Isolated From Symptomatic and Asymptomatic Women by Random Amplified Polymorphic DNA. Egyptian Journal of Schistosomiasis, Infectious and Endemic Diseases, 32, 13-21.
[8] Muller, M. (1983) Trichomonas vaginalis and Other Sexually Transmitted Protozoan Infections. In: Holmes, K.K. and Mardh, P., Eds., International Perspectives of Neglected STDs, Hemisphere Publishing, New York, 113-124.
[9] Mendoza-Lopez, M.R., Bercerril-Garcia, C., Fattel-Facenda, L.V., Ortega-lopez, J., Avila-Gonzalez, L. and Rui, M.E. (2000) CP 30, A Cysteine Proteinase Involved in Trichomonas vaginalis Cytoadherence. Infection and Immunity, 68, 4907-4912.
http://dx.doi.org/10.1128/IAI.68.9.4907-4912.2000
[10] Golden, M.P. and Henderson, W.R. (2007) Mechanisms of Disease: Leukotrienes. The New England Journal of Medicine, 357, 1798-1854.
[11] Golden, M.P., Canetti, C., Mancuso, P. and Coffey, M.J. (2005) Leukotrienes: Underappreciated Mediators of Innate Immune Responses. The Journal of Immunology, 174, 589-594.
http://dx.doi.org/10.4049/jimmunol.174.2.589
[12] Rogerio, A.P. and Anibal, F.F. (2012) Role of Leukotrienes on Protozoan and Helminthes Infections. Mediators of Inflammation, 2012, 595-694.
[13] Mancuso, P., Nana-Sinkam, P. and Peters-Golden, M. (2001) Leukotriene B4 Augments Neutrophil Phagocytosis of Klebsiella pneumoniae. Infection and Immunity, 69, 2011-2016.
http://dx.doi.org/10.1128/IAI.69.4.2011-2016.2001
[14] Machado, E.R., Ueta, M.T., Lourenco, E.V., Anibal, F.F., Sorgi, C.A., Soares, E.G. and Faccioli, L.H. (2005) Leukotrienes Play a Role in The Control of Parasite Burden in Murine Strongyloidiasis. The Journal of Immunology, 175, 3892-3899.
http://dx.doi.org/10.4049/jimmunol.175.6.3892
[15] Medeiros, I.A., Sa-Nunes, A., Soares, E.G., Peres, C.M., Silva, C.L. and Faccioli, L.H. (2004) Blockade of Endogenous Leukotrienes Exacerbates Pulmonary Histoplasmosis. Infection and Immunity, 72, 1637-1644.
http://dx.doi.org/10.1128/IAI.72.3.1637-1644.2004
[16] Anibal, F.F., Rogerio, A.P., Malheiro, A., Machado, E.R., Martins-Filho, O.A., Andrade, M.C. and Faccioli, L.H. (2007) Impact of MK886 on Eosinophil Counts and Phenotypic Features in Toxocariasis. Scandinavian Journal of Immunology, 65, 344-352.
http://dx.doi.org/10.1111/j.1365-3083.2007.01911.x
[17] Peres-Buzalaf, C., de Paula, L., Frantz, F.G., Soares, E.M., Medeiros, A.I., Peters-Golden, M., Silva, C.L. and Faccioli, L.H. (2011) Control of Experimental Pulmonary Tuberculosis Depends More on Immunostimulatory Leukotrienes than on the Absence of Immunosuppressive Prostaglandins. Prostaglandins Leukotrienes and Essential Fatty Acids, 85, 75-81.
http://dx.doi.org/10.1016/j.plefa.2011.04.024
[18] Malla, N., Yadav, M. and Gupta, I. (2007) Kinetics of Serum and Local Cytokine Profile in Experimental Intravaginal Trichomoniasis Induced with Trichomona svaginalis Isolates from Symptomatic and Asymptomatic Women. Parasite Immunology, 29, 101-105.
http://dx.doi.org/10.1111/j.1365-3024.2006.00914.x
[19] Kaur, S., Khurana, S., Bagga, R., Wanchu, A. and Malla, N. (2008) Antitrichomonas IgG, IgM, IgA, and IgG Subclass Responses in Human Intravaginal Trichomoniasis. Parasitology Research, 103, 305-312.
http://dx.doi.org/10.1007/s00436-008-0971-y
[20] Nam, Y.H., Min, D., Kim, H.P., Song, K.J., Kim, K.A., Lee, Y.A., Kim, S.H., Lee, Y.A., Kim, K.A., Song, K.J. and Shin, M.H. (2011) Leukotriene B4 Receptor BLT-Mediated Phosphorylation of NF-κB and CREB Is Involved in IL-8 Production in Human Mast Cells Induced by Trichomonas vaginalis-Derived Secretory Products. Microbes and Infection/Institut Pasteur, 13, 1211-1220.
[21] Helmy, M., El-Gayar, E., Hussein, E., Abdou, A. and Mahdy, Z. (2008) Comparison between Trichmonas vaginalis Symptomatic and Asymptomatic Isolates Effects in Intravaginally Infected Rats. Journal of the Egyptian Society of Parasitology, 38, 843-852.
[22] Diamond, L.S. (1957) The Establishment of Various Trichomonads of Animals and Men in Axenic Culture. Journal of Parasitology, 56, 79-81.
[23] Garcia, L.S. (2001) Diagnostic Medical Parasitology.4th Edition, ASM Press, Washington DC.
[24] Coombs, G., Bremner, A., Markham, D., Latter, V., Walters, M. and North, M. (1987) Intravaginal Growth of T. vaginalis in Mice. Acta Universitatis Carolinae-Biologica, 30, 387-392.
[25] Escario, A., Gomez Barrio, A., Simons, B., Diez, J. and Escario, A. (2010) Immunohistochemical Study of the Vaginal Inflammatory Response in Experimental Trichomoniasis. Acta Tropica, 114, 22-30.
http://dx.doi.org/10.1016/j.actatropica.2009.12.002
[26] Maclouf, J. and Pradelles, P. (1987) Chapter 5: Development of Enzyme Linked Immunoassay Technique for Measurement of Ecosanoide. In: Walden Jr., T.L. and Hughes, H.N., Eds., Prostaglandin and Lipid Metabolism in Radiation Injury, Plenum Press, Rockville, 355-364.
http://dx.doi.org/10.1007/978-1-4684-5457-4_37
[27] Yuan, L.J. and Gao, X.Z. (2003) Isoenzyme Analysis on Different Isolates of Trichomonas vaginalis. Chinese Journal of Parasitology and Parasitic Diseases, 21, 102-105.
[28] Meade, J.C., De Mestral, J., Stiles, J.K., Secor, W.E., Finley, R.W., Cleary, J.D. and Lushbaugh, W.B. (2009) Genetic Diversity of Trichomonas vaginalis Clinical Isolates Determined by Eco RI Restriction Fragment Length Polymorphism of Heat-Shock Protein 70 Genes. American Journal of Tropical Medicine and Hygiene, 80, 245-251.
[29] Yuan, L.J. and Gao, X.Z. (2004) RAPD Analysis on Different Isolates of Trichomonas vaginalis. Chinese Journal of Parasitology and Parasitic Diseases, 22, 90-93.
[30] Cobo, E.R., Eckmann, L. and Corbeil, L.B. (2011) Murine Models of Vaginal Trichomonad Infections. American Journal of Tropical Medicine and Hygiene, 85, 667-673.
http://dx.doi.org/10.4269/ajtmh.2011.11-0123
[31] Gomez, B.A., Nogal, R.J., Montero, P., Rodriguez, E., Romero, E. and Escario, J. (2002) Biological Variability in Clinical Isolates of Trichomonas vaginalis. Memórias do Instituto Oswaldo Cruz, 97, 893-896.
http://dx.doi.org/10.1590/S0074-02762002000600026
[32] Jesus, B., Vannier, M., Britto, C., Godefroy, P., Silva-Filho, F.C., Pinheiro, A.A., Rocha-Azevedo, B., Lopes, A.H. and Meyer-Fernandes, J.R. (2004) Trichomonas vaginalis Virulence against Epithelial Cells and Morphological Variability: Comparison between a Well-Established Strain and a Fresh Isolate. Parasitology Research, 93, 369-377.
http://dx.doi.org/10.1007/s00436-004-1134-4
[33] Hussien, E., El-Sayed, H., El-Moamly, A., Helmy, M. and Shaban, M. (2004) Biological Variability Trichomonas vaginalis Clinical Isolates from Symptomatic and Asymptomatic Patients. Journal of the Egyptian Society of Parasitology, 35, 787-793.
[34] Yadav, M., Dubey, M., Gupta, I., Bhatti, G. and Malla, N. (2007) Cysteine Proteinase 30 (CP30) and Antibody Response to CP30 in Serum and Vaginal Washes of Symptomatic and Asymptomatic Trichomonas vaginalis Infected Women. Parasite Immunology, 29, 359-365.
http://dx.doi.org/10.1111/j.1365-3024.2007.00952.x
[35] Honigberg, B.M. (1990) Host Cell Trichomonad Interactions and Virulence Assays Using in Vitro Systems. In: Honigberg, B.M., Ed., Trichomonads Parasitic in Humans, Springer-Verlag, New York, 115-137.
http://dx.doi.org/10.1007/978-1-4612-3224-7_9
[36] Malla, N., Paintlia, M.K., Gupta, I., Ganguly, N.K. and Mahajan, R.C. (1999) Experimental Intravaginal Trichomoniasis Induced with Strains of Trichomonas vaginalis Isolated from Symptomatic and Asymptomatic Women. Journal of Parasitic Diseases, 23, 89-96.
[37] Nielsen, M. and Nielsen, R. (1975) Electron Microscopy of Trichomonas vaginalis Donne: Interaction with Vaginal Epithelium in Human Trichomoniasis. Acta Agriculture Scandinavica Section B, 83, 305-320.
[38] Buchwald, D., Demes, P., Gombosova, A., Mraz, P., Valent, M. and Stefanovic, J. (1992) Vaginal Leukocyte Characteristics in Urogenital Trichomoniasis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 100, 398-400.
[39] Bhatt, R., Deoher, L., Pandite, D., Bhise, R. and Chateerjee, D. (1997) Comparative Pathogenicity of Trichomonas vaginalis Isolated from Symptomatic and Asymptomatic Cases. Journal of Postgraduate Medicine, 43, 68-70.
[40] Hussien, E., El-Sayed, H., Shaban, M., Salem, A. and Rashwan, A. (2004) Molecular Characterization of Trichomonas vaginalis Clinical Isolates by HSP70 Restriction Fragment Length Polymorphism. Journal of the Egyptian Society of Parasitology, 34, 979-988.
[41] Shaio, M.F. and Lin, P.R. (1995) Leucotriene B4 Levels in the Vaginal Discharges from Cases of Trichomoniasis. Annals of Tropical Medicine and Parasitology, 89, 85-88.
[42] Malla, N., Valadkhani, Z., Harjai, K., Sharma, S. and Gupta, I. (2004) Reactive Nitrogen Intermediates in Experimental Trichomoniasis Induced with Isolates from Symptomatic and Asymptomatic Women. Parasitology Research, 94, 101-105.
[43] Shaio, M.F., Lin, P.R., Lee, C.S., Hou, S.C., Tang, P. and Yang, K.D. (1992) A Novel Neutrophil-Activating Factor Released by Trichomonas vaginalis. Infection and Immunity, 60, 4475-4482.
[44] Manson, P.R. and Forman, L. (1980) In Vitro Attraction of Polymorphonuclear Leucocytes by Trichomonas vaginalis. Journal of Parasitology, 66, 888-892.
http://dx.doi.org/10.2307/3280382
[45] Shaio, M.F. and Lin, P.R. (1995) Influence of Humeral Immunity on Leukotriene B4 Production by Neutrophils in Response to Trichomonas vaginalis Stimulation. Parasite Immunology, 17, 127-133.
http://dx.doi.org/10.1111/j.1365-3024.1995.tb01014.x
[46] Nam, Y.H., Min, A., Kim, S.H., Song, K.J. and Shin, M.H. (2012) Leukotriene B4 Receptors BLT1 and BLT2 Are Involved in Interleukin-8 Production in Human Neutrophils Induced by Trichomonas vaginalis-Derived Secretory Products. Inflammation Research, 61, 97-102.
http://dx.doi.org/10.1007/s00011-011-0425-3
[47] Nam, Y.H., Min, D. and Kim, H.P. (2011) Leukotriene B4 Receptor BLT-Mediated Phosphorylation of NF-κB and CREB Is Involved in IL-8 Production in Human Mast Cells Induced by Trichomonas vaginalis-Derived Secretory Products. Microbes and Infection, 13, 1211-1220.
http://dx.doi.org/10.1016/j.micinf.2011.07.006
[48] Song, M.J., Lee, J.J., Nam, Y.H., Kim, T.G., Chung, Y.W., Kim, M., Choi, Y.E., Shin, M.H. and Kim, H.P. (2014) Modulation of Dendritic Cell Function by Trichomonas vaginalis-Derived Secretory Products. BMB Reports, 2846.
[49] Jones, W.O., Window, R.G., Steel, J.W. and Outteridge, P.M. (1990) Histamine and Leukotriene Concentrations in Duodenal Tissue and Mucus of Lambs Selected for High and Low Responsiveness to Vaccination and Challenge with Trichostrongylus colubriformis. International Journal of Parasitology, 20, 1075-1079.
http://dx.doi.org/10.1016/0020-7519(90)90052-O
[50] Jones, W.O., Emery, D.L., McClure, S.J. and Wagland, B.M. (1994) Changes in Inflammatory Mediators and Larval Inhibitory Activity Contents and Mucus during Primary and Challenge Infections of Sheep Trichostrongylus colubriformis. International Journal of Parasitology, 24, 519-525.
http://dx.doi.org/10.1016/0020-7519(94)90143-0
[51] Dey, I. and Chadee, K. (2008) Prostaglandin E2 Produced by Entamoeba histolytica Binds to EP4 Receptors and Stimulates Interleukin-8 Production in Human Colonic Cells. Infection and Immunity, 76, 5158-5163.
http://dx.doi.org/10.1128/IAI.00645-08
[52] Nam, Y.H., Min, A., Kim, S.H., Lee, Y.A., Kim, K.A., Song, K.J. and Shin, M.H. (2012) Trichomonas vaginalis-Derived Secretory Products. Inflammation Research, 61, 97-102.
http://dx.doi.org/10.1007/s00011-011-0425-3
[53] Knight, P.A., Brown, J.K. and Pemberton, A.D. (2008) Innate Immune Response Mechanisms in the Intestinal Epithelium: Potential Roles for Mast Cells and Goblet Cells in the Expulsion of Adult Trichinella spiralis. Parasitology, 135, 655-670.
http://dx.doi.org/10.1017/S0031182008004319
[54] Serezani, C.H., Perrela, J.H., Russo, M., Golden, M.P. and Jancar, S. (2006) Leukotrienes Are Essential for the Control of Leishmania amazonensis Infection and Contribute to Strain Variation in Susceptibility. Journal of Immunology, 177, 3201-3208.
http://dx.doi.org/10.4049/jimmunol.177.5.3201
[55] Chaves, M.M., Marques-da-Silva, C., Monteiro, A.P., Canetti, C. and Coutinho-Silva, R. (2014) Leukotriene B4 Modulates P2X7 Receptor-Mediated Leishmania amazonensis Elimination in Murine Macrophages. Journal of Immunology, 192, 4765-4773.
http://dx.doi.org/10.4049/jimmunol.1301058
[56] Monteiro, M.C., Nogueira, L.G., Almeida Souza, A.A., Ribeiro, J.M.C., Silva, J.S. and Cunha, F.Q. (2005) Effect of Salivary Gland Extract of Leishmania Vector, Lutzomyia longipalpis, on Leukocyte Migration in OVA-Induced Immune Peritonitis. European Journal of Immunology, 35, 2424-2433.
http://dx.doi.org/10.1002/eji.200526160
[57] Lefèvre, L., Lugo-Villarino, G., Meunier, E., Valentin, A., Olagnier, D., Authier, H., Duval, C., Dardenne, C., Bernad, J., Lemesre, J.L., Auwerx, J., Neyrolles, O., Pipy, B. and Coste, A. (2013) The C-Type Lectin Receptors Dectin-1, MR, and SIGNR3 Contribute Both Positively and Negatively to the Macrophage Response to Leishmania infantum. Immunity, 38, 1038-1049.
[58] Xiao, L., Patterson, P.S., Yang, C. and Lal, A.A. (1999) Role of Eicosanoids in the Pathogenesis of Murine Cerebral Malaria. American Journal of Tropical Medicine and Hygiene, 60, 668-673.
[59] Yong, E.C., Chi, E.Y. and Henderson, W.R. (1994) Toxoplasma gondii Alters Eicosanoid Release by Human Mononuclear Phagocytes: Role of Leukotrienes in Interferon γ-Induced Antitoxoplasma Activity. Journal of Experimental Medicine, 180, 1637-1648.
http://dx.doi.org/10.1084/jem.180.5.1637
[60] Borges, C.L., Cecchini, R., Tatakihara, V.L., Malvezi, A.D., Yamada-Ogatta, S.F., Rizzo, L.V. and Pinge-Filho, P. (2009) 5-Lipoxygenase Plays a Role in the Control of Parasite Burden and Contributes to Oxidative Damage of Erythrocytes in Murine Chagas’ Disease. Immunology Letters, 123, 38-45.
http://dx.doi.org/10.1016/j.imlet.2009.02.002
[61] Panis, C., Mazzuco, T.L., Costa, C.Z., Victorino, V.J., Tatakihara, V.L., Yamauchi, L.M., Yamada-Ogatta, S.F., Cecchini, R., Rizzo, L.V. and Pinge-Filho, P. (2011) Trypanosoma cruzi: Effect of the Absence of 5-Lipoxygenase (5-LO)-Derived Leukotrienes on Levels of Cytokines, Nitric Oxide and iNOS Expression in Cardiac Tissue in the Acute Phase of Infection in Mice. Experimental Parasitology, 127, 58-65.
http://dx.doi.org/10.1016/j.exppara.2010.06.030
[62] Machado, F.S., Mukherjee, S., Weiss, L.M., Tanowitz, H.B. and Ashton, A.W. (2011) Bioactive Lipids in Trypanosoma cruzi Infection. Advances in Parasitology, 76, 1-31.
http://dx.doi.org/10.1016/B978-0-12-385895-5.00001-3

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.