Expression of the Genes OsNRT1.1, OsNRT2.1, OsNRT2.2, and Kinetics of Nitrate Uptake in Genetically Contrasting Rice Varieties


Four genetically contrasting rice varieties (IAC-47, Bico Ganga, Arroz de Revenda and Manteiga) according to Random Amplified Polymorphic DNA (RAPD) analysis were assessed regarding expression of the genes OsNRT1.1, OsNRT2.1 and OsNRT2.2 and the nitrate uptake kinetics parameters (Km and Vmax). Up to 250-fold increases in the induction of gene expression after nitrate resupply were observed for the high-affinity transporter (OsNRT2.1 and OsNRT2.2). However, no significant variations in Vmax among the varieties were obtained. The lower value of Km of the IAC-47 cultivar in relation to the Arroz de Revenda variety suggests a greater role of high-affinity transporter genes. These results indicate that closer attention should be paid to the expression levels of these genes in selecting varieties aiming to enhance nitrogen uptake efficiency.

Share and Cite:

Araújo, O. , Pinto, M. , Sperandio, M. , Santos, L. , Stark, E. , Fernandes, M. , Santos, A. and Souza, S. (2015) Expression of the Genes OsNRT1.1, OsNRT2.1, OsNRT2.2, and Kinetics of Nitrate Uptake in Genetically Contrasting Rice Varieties. American Journal of Plant Sciences, 6, 306-314. doi: 10.4236/ajps.2015.62035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Nguyen, N.V. and Duffy, R. (2004) Proceedings of the FAO Rice: Rice Is Life. CONFERENCE, International Rice Commission Newsletter.
[2] Souza, S.R., Stark, E.M.L.M. and Fernandes, M.S (1998) Nitrogen Remobilization during the Reproductive Period in two Brazilian Rice Varieties. Journal of Plant Nutrition, 21, 2049-2063.
[3] Rodrigues, F.S., Souza, S.R., Rodrigues, F.S. and Fernandes, M.S. (2004) Nitrogen Metabolism in Rice Cultivated under Seasonal Flush of Nitrate. Journal of Plant Nutrition, 27, 395-409.
[4] Santos, A.M., Stark, E.M.L.M., Fernandes, M.S. and Souza, S.R. (2007) Effects of Seasonal Nitrate Flush on Nitrogen Metabolism and Soluble Fractions Accumulation in Two Rice Varieties. Journal of Plant Nutrition, 30, 1371-1384.
[5] Santos, L.A., Santos, W.A., Sperandio, M.V.L., Bucher, C.A., Souza, S.R. and Fernandes, M.S. (2011) Nitrate Uptake Kinetics and Metabolic Parameters in Two Rice Varieties Grown in High and Low Nitrate. Journal of Plant Nutrition, 34, 988-1002.
[6] Ferreira, M.E. and Grattapaglia, D. (1998) Introdução ao uso de marcadores moleculares em análise genética. 3rd Edition, EMBRAPA—CENARGEN, Brasília.
[7] Araújo, E.S., Souza, S.R. and Fernandes, M.S. (2003) Características morfológicas e moleculares e acúmulo de proteína em grãos de variedades de arroz do Maranhão. Pesquisa Agropecuária Brasileira, 38, 1281-1288.
[8] Areias, R.G.B.M., Paiva, D.M., Souza, S.R. and Fernandes, M.S. (2006) Similaridade genética de variedades crioulas de arroz em função da morfologia, marcadores RAPD e acúmulo de proteína nos grãos. Bragantia, 65, 19-28.
[9] Bhuyan, N., Borah, B.K. and Sarma, R.N. (2007) Genetic Diversity Analysis in Traditional Lowland Rice (Oryza sativa L.) of Assam Using RAPD and ISSR Markers. Current Science, 93, 967-972.
[10] Rabbani, M., Pervaiz, Z.H. and Masood, M.S. (2008) Genetic Diversity Analysis of Traditional and Improved Cultivars of Pakistani Rice (Oryza sativa L.) Using RAPD Markers. Electronic Journal of Biotechnology, 11, 1-10.
[11] Jaccard, P. (1976) étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin Société Vaudoise Science Nature, 3, 547-579.
[12] Hoagland, D.R. and Arnon, D.I. (1950) The Water-Culture Method for Growing Plants without Soil. California Agricultural Experiment Station, Berkeley.
[13] Gao, J., Liu, J., Li, B. and Li, Z. (2001) Isolation and Purification of Functional Total RNA from Blue-Grained Wheat Endosperm Tissues Containing High Levels of Starches and Favonoids. Plant Molecular Biology Reporter, 19, 185-186.
[14] Sperandio, M.V.L., Santos, L.A., Bucher, C.A., Fernandes, M.S. and Souza, S.R. (2011) Isoforms of Plasma Membrane H+-ATPase in Rice Root and Shoot Are Differentially Induced by Starvation and Resupply of or . Plant Science, 180, 251-258.
[15] Jain, M., Nijhawan, A., Tyagi, A.K. and Khurana, J.P. (2006) Validation of Housekeeping Genes as Internal Control for Studying Gene Expression in Rice by Quantitative Real-Time PCR. Biochemical and Biophysical Research Communications, 345, 646-651.
[16] Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-408.
[17] Cataldo, D., Maroon, M., Schrader, L.E. and Youngs, V.L. (1975) Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Communications in Soil Science and Plant Analysis, 6, 853-855.
[18] Ruiz, H.A. (1985) Estimativas dos parametros cinéticos em Km e Vmáx por uma aproximação gráfico-matemática. Revista Ceres, 32, 79-84.
[19] Ruiz, H.A. and Fernandes Filho, E.I. (1992) Cinética: Software para estimar as constantes Vmax e Km da equação de Michaelis-Menten. XX Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, Piracicaba, 124-125.
[20] Epstein, E. and Bloom, A.J. (2005) Mineral Nutrition of Plants: Principles and Perspectives. 2nd Edition, Sinauer Associates, Inc., Sunderland.
[21] Araki, R. and Hasegawa, H. (2006) Expression of Rice (Oryza sativa L.) Genes Involved in High-Affinity Nitrate Transport during the Period of Nitrate Induction. Breeding Science, 56, 295-302.
[22] Hu, H.C., Wang, Y.Y. and Tsay, Y.F. (2009) AtCIPK8, a CBL-Interacting Protein Kinase, Regulates the Low-Affinity Phase of the Primary Nitrate Response. The Plant Journal, 57, 264-278.
[23] Ho, C.H., Lin, S.H., Hu, H.C. and Tsay, Y.F. (2009) CHL1 Functions as a Nitrate Sensor in Plants. Cell, 138, 1184-1194.
[24] Girin, T., Lejay, L., Wirth, J., Widiez, T., Palenchar, P.M., Nazoa, P., Touraine, B., Gojon, A. and Lepetit, M. (2007) Identification of a 150 bp Cis-Acting Element of the AtNRT2.1 Promoter Involved in the Regulation of Gene Expression by N and C Status of the Plant. Plant, Cell & Environment, 30, 1366-1380.
[25] Wirth, J., Chopin, F., Santoni, V., Viennois, G., Tillard, P., Krapp, A., Lejay, L., Daniel-Vedele, F. and Gojon, A. (2007) Regulation of Root Nitrate Uptake at the NRT2.1 Protein Level in Arabidopsis thaliana. The Journal of Biological Chemistry, 282, 23541-23552.
[26] Feng, H., Yan, M., Fan, X., Li, B., Shen, Q., Miller, A.J. and Xu, G. (2011) Spatial Expression and Regulation of Rice High-Affinity Nitrate Transporters by Nitrogen and Carbon Status. Journal of Experimental Botany, 62, 2319-2332.
[27] Liu, J., Chen, F., Olokhnuud, C., Glass, A.D.M., Tong, Y., Zhang, F. and Mi, G. (2009) Root Size and Nitrogen-Uptake Activity in Two Maize (Zea mays) Inbred Lines Differing in Nitrogen-Use Efficiency. Journal of Plant Nutrition and Soil Sciences, 172, 230-236.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.