Waste Water Treatment in Direct Borohydride Fuel Cell with Bipolar Membrane

Abstract

It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out treatment of water polluted by organic compounds in fuel cell catholyte. Treatment of water was carried out by electro-Fenton and photo-electro-Fenton methods. With the view of efficiency, photo-electro-Fenton method of treatment was the most efficient, which enabled to decrease COD of catholytes containing (in each case) phenol, valsaren, 400 g/L dymethoate (BI-58) and valsaciper from 500 ppm to 30, 11, 9 and 3 ppm, respectively after 180 min treatment. By increasing the catholyte temperature from 20℃ to 40℃ in the same period, phenol COD fell to 5 ppm.

Share and Cite:

Nikoleishvili, P. , Tsurtsumia, G. , Kveselava, V. , Gorelishvili, G. , Kurtanidze, R. , Koiava, N. , Kakhniashvili, I. and Sharabidze, D. (2015) Waste Water Treatment in Direct Borohydride Fuel Cell with Bipolar Membrane. Open Journal of Ecology, 5, 22-32. doi: 10.4236/oje.2015.52003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Zepp, R., Faust, B. and Hoign, J. (1992) Hydroxyl Radical Formation in Aqueous Reactions (pH 3 - 8) of Iron(II) with Hydrogen Peroxide: The Photo-Fenton Reaction. Environmental Science Technology, 26, 313-319.
http://dx.doi.org/10.1021/es00026a011
[2] Brillas, E., Mur, E. and Casado, J. (1996) Iron(II) Catalysis of the Mineralization of Aniline Using a Carbon-PTFE O2-Fed Cathode. Journal of the Electrochemical Society, 143, 49-53.
http://dx.doi.org/10.1149/1.1836528
[3] Brillas, E., Calpe, J. and Casado, J. (2000) Mineralization of 2,4-D by Advanced Oxidation Processes. Water Research, 34, 2253-2262. http://dx.doi.org/10.1016/S0043-1354(99)00396-6
[4] Irmak, S., Yavuz, H. and Erbatur, O. (2004) Degradation of 4-Chloro-2-Methylphenol in Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide. Applied Catalysis B: Environmental, 54, 85-91.
http://dx.doi.org/10.1016/j.apcatb.2004.06.003
[5] Brillas, E., Banos, M. and Garrido, J. (2003) Mineralization of Herbicide 3,6-Dichloro-2-Methoxybenzoic Acid in Aqueous Medium by Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton. Electrochimica Acta, 48, 1697-1705.
http://dx.doi.org/10.1016/S0013-4686(03)00142-7
[6] Sirés, I., Arias, C., Cabot, P., Centellas, F., Rodríguez, R., Garrido, J. and Brillas, E. (2004) Paracetamol Mineralization by Advanced Electrochemical Oxidation Processes for Wastewater Treatment. Environmental Chemistry, 1, 26-28.
http://dx.doi.org/10.1071/EN04018
[7] Sirés, I., Centellas, F., Garrido, J., Rodríguez, R., Arias, C., Cabot, P. and Brillas, E. (2007) Mineralization of Clofibric Acid by Electrochemical Advanced Oxidation Processes Using a Boron-Doped Diamond Anode and Fe2+ and UVA Light as Catalysts. Applied Catalysis B: Environmental, 72, 373-381. http://dx.doi.org/10.1016/j.apcatb.2006.12.002
[8] Sirés, I., Arias, C., Cabot, P., Centellas, F., Garrido, J., Rodríguez, R. and Brillas, E. (2007) Degradation of Clofibric Acid in Acidic Aqueous Medium by Electro-Fenton and Photoelectro-Fenton. Chemosphere, 66, 1660-1669.
http://dx.doi.org/10.1016/j.chemosphere.2006.07.039
[9] Brillas, E., Banos, M., Skoumal, M., Cabot, P., Garrido, J. and Rodríguez, R. (2007) Degradation of the Herbicide 2,4-DP by Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton Using Platinum and Boron-Doped Diamond Anodes. Chemosphere, 68, 199-209.
http://dx.doi.org/10.1016/j.chemosphere.2007.01.038
[10] Flox, C., Garrido, J., Rodríguez, R., Cabot, P., Centellas, F., Arias, C. and Brillas, E. (2007) Mineralization of Herbicide Mecoprop by Photoelectro-Fenton with UVA and Solar Light. Catalysis Today, 129, 29-36.
http://dx.doi.org/10.1016/j.cattod.2007.06.049
[11] Guinea, E., Arias, C., Cabot, P., Garrido, J., Rodríguez, R., Centellas, F. and Brillas, E. (2008) Mineralization of Salicylic Acid in Acidic Aqueous Medium by Electrochemical Advanced Oxidation Processes Using Platinum and Boron-Doped Diamond as Anode and Cathodically Generated Hydrogen Peroxide. Water Research, 42, 499-511.
http://dx.doi.org/10.1016/j.watres.2007.07.046
[12] Skoumal, M., Arias, C., Cabot, P., Centellas, F., Garrido, J., Rodríguez, R. and Brillas, E. (2008) Mineralization of the Biocide Chloroxylenol by Electrochemical Advanced Oxidation Processes. Chemosphere, 71, 1718-1729.
http://dx.doi.org/10.1016/j.chemosphere.2007.12.029
[13] Oller, I., Malato, S., Sánchez-Pérez, J., Gernjak, W., Maldonado, M., Pérez-Estrada, L. and Pulgarin, C. (2007) A Combined Solar Photocatalytic-Biological Field System for the Mineralization of an Industrial Pollutant at Pilot Scale. Catalysis Today, 122, 150-159. http://dx.doi.org/10.1016/j.cattod.2007.01.041
[14] Pignatello, J. (1992) Dark and Photoassisted Iron(3+)-Catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide. Environmental Science & Technology, 26, 944-951.
http://dx.doi.org/10.1021/es00029a012
[15] Zuo, Y. and Hoigné, J. (1992) Formation of Hydrogen Peroxide and Depletion of Oxalic Acid in Atmospheric Water by Photolysis of Iron(III)-Oxalato Complexes. Environmental Science & Technology, 26, 1014-1022.
http://dx.doi.org/10.1021/es00029a022
[16] Agladze, G., Tsurtsumia, G., Jung, B.I., Kim, J.S. and Gorelishvili, G. (2007) Comparative Study of Hydrogen Peroxide Electro-Generation on Gas-Diffusion Electrodes in Undivided and Membrane Cells. Journal of Applied Electrochemistry, 37, 375-383. http://dx.doi.org/10.1007/s10800-006-9269-x
[17] Agladze, G., Tsurtsumia, G., Jung, B.I., Kim, J.S. and Gorelishvili, G. (2007) The “In-Cell” and “Ex-Cell” Fenton Treatment of Phenol, 4-Chlorophenol and Aniline. Journal of Applied Electrochemistry, 37, 385-393.
http://dx.doi.org/10.1007/s10800-006-9268-y
[18] Agladze, G., Tsurtsumia, G., Jung, B.I., Kim, J.S. and Gorelishvili, G. (2007) Comparative Study of Chemical and Electrochemical Fenton Treatment of Organic Pollutants in Wastewater. Journal of Applied Electrochemistry, 37, 985-990. http://dx.doi.org/10.1007/s10800-007-9325-1
[19] Agladze, G., Nikoleishvili, P., Tsurtsumia, G., Kveselava, V., Gorelishvili, G. and Latsusbaia, R. (2010) Electrosynthesis of Sodium Perborate. ECS Transactions, 25, 345-363.
[20] Agladze, G., Nikoleishvili, P., Tsurtsumia, G., Kveselava, V., Gorelishvili, G. and Latsusbaia, R. (2010) DMFC with Hydrogen Peroxide Cogeneration. Journal of the Electrochemical Society, 157, E140-E147.
http://dx.doi.org/10.1149/1.3461161
[21] Taylor, R. and Humffray, A. (1975) Electrochemical Studies on Glassy Carbon Electrodes: II. Oxygen Reduction in Solutions of High pH (pH > 10). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 64, 63-84.
http://dx.doi.org/10.1016/S0022-0728(75)80278-6
[22] Yang, H.H. and McCreery, R. (2000) Elucidation of the Mechanism of Dioxygen Reduction on Metal-Free Carbon Electrodes. Journal of the Electrochemical Society, 147, 3420-3428.
http://dx.doi.org/10.1149/1.1393915
[23] Alcaide, F., Brillas, E., Cabot, P. and Casado, J. (1998) Electrogeneration of Hydroperoxide Ion Using an Alkaline Fuel Cell. Journal of the Electrochemical Society, 145, 3444-3449.
http://dx.doi.org/10.1149/1.1838825
[24] Brillas, E., Alcaide, F. and Cabot, P. (2002) A Small-Scale Flow Alkaline Fuel Cell for On-Site Production of Hydrogen Peroxide. Electrochimica Acta, 48, 331-340. http://dx.doi.org/10.1016/S0013-4686(02)00665-5
[25] Agladze, G., Nikoleishvili, P., Kveselava, V., Tsurtsumia, G., Gorelishvili, G., Gogoli, D. and Kakhniashvili, I. (2012) A Novel Aluminium-Air Semi-Fuel Cell Operating with Hydrogen Peroxide Co-Generation. Journal of Power Sources, 218, 46-51. http://dx.doi.org/10.1016/j.jpowsour.2012.06.086
[26] Wilhelm, F. (2001) Bipolar Membrane Electrodialysis. Twente University Press, Enschede, 221.
[27] APHA (1985) Standard Methods for the Examination of Water and Wastewater. 16th Edition, American Public Health Association, Washington DC.
[28] (2000) Experiment Instruction for Нydro-Genius TM Professional. Вerlin, 16.
[29] Brillas, E., Sirés, I. and Oturan, M. (2009) Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109, 6570-6631.
http://dx.doi.org/10.1021/cr900136g
[30] Esplugas, S., Gimenez, J., Contreras, S., Pascual, E. and Rodriguez, M. (2002) Comparison of Different Advanced Oxidation Processes for Phenol Degradation. Water Research, 36, 1034-1042.
http://dx.doi.org/10.1016/S0043-1354(01)00301-3
[31] Bach, A., Shemer, H. and Semiat, R. (2010) Kinetics of Phenol Mineralization by Fenton-Like Oxidation. Desalination, 264, 188-192. http://dx.doi.org/10.1016/j.desal.2010.04.011

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.