[1]
|
Little, R.J.A. and Rubin, D.B. (1987) Statistical Analysis with Missing Data. John Wiley & Sons, New York.
|
[2]
|
Collins, L.M., Schafer, J.L. and Kam, C.M. (2001) A Comparison of Inclusive and Restrictive Missing-Data Strategies in Modern Missing-Data Procedures. Psychological Methods, 6, 330-351. http://dx.doi.org/10.1037/1082-989X.6.4.330
|
[3]
|
Little, R.J.A. (1988) A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association, 83, 1198-1202. http://dx.doi.org/10.1080/01621459.1988.10478722
|
[4]
|
Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.L. (2002) Analysis of Longitudinal Data. 2nd Edition, Clarendon Press, Clarendon.
|
[5]
|
Carpenter, J.R., Kenward, M.G. and Vansteelandt, S. (2006) A Comparison of Multiple Imputation and Doubly Robust Estimation for Analyses with Missing Data. Journal of the Royal Statistical Society, Series A (Statistics in Society), 169, 571-584. http://dx.doi.org/10.1111/j.1467-985X.2006.00407.x
|
[6]
|
Musil, C.M., Warner, C.B., Yobas, P.K. and Jones, S.L. (2002) A Comparison of Imputation Techniques for Handling Missing Data. Western Journal of Nursing Research, 24, 815-829. http://dx.doi.org/10.1177/019394502762477004
|
[7]
|
Sprint, A. and Dupin-Sprint, T. (1993) Imperfect Data Analysis. Drug Information Journal, 27, 995-994.
|
[8]
|
Myers, W.R. (2000) Handling Missing Data in Clinical Trials: An Overview. Drug Information Journal, 34, 525-533.
|
[9]
|
Hening, D. and Koonce, D.A. (2014) Missing Data Imputation Method Comparison in Ohio University Student Retention Database. Proceeding of the 2014 International Conference on Industrial Engineering and Operations Management, Bali, Indonesia.
|
[10]
|
Ali, A.M.G., Dawson, S.J., Blows, F.M., Provenzano, E., Ellis, I.O., Baglietto, L., Huntsman, D., Caldas, C. and Pharoah, P.D. (2011) Comparison of Methods for Handling Missing Data on Immunohistochemical Markers in Survival Analysis of Breast Cancer. British Journal of Cancer, 104, 693-699.
|
[11]
|
Patrician, P.A. (2002) Focus on Research Methods Multiple Imputation for Missing Data. Research in Nursing & Health, 25, 76-84. http://dx.doi.org/10.1002/nur.10015
|
[12]
|
Nakai, M., Chen, D.G., Nishimura, K. and Miyamoto, Y. (2014) Comparative Study of Four Methods in Missing Value Imputations under Missing Completely at Random Mechanism. Open Journal of Statistics, 4, 27-37.
|
[13]
|
Lavori, P.W., Dawson, R. and Shera, D. (1995) A Multiple Imputation Strategy for Clinical Trials with Truncation of Patient Data. Statistics in Medicine, 14, 1913-1925. http://dx.doi.org/10.1002/sim.4780141707
|
[14]
|
Allison, P.D. (2001) Missing Data. Sage Publications, Thousand Oaks.
|
[15]
|
Kim, J.O. and Curry, J. (1977) The Treatment of Missing Data in Multivariate Analysis. Sociological Methods Research, 6, 215-240. http://dx.doi.org/10.1177/004912417700600206
|
[16]
|
Allison, P.D. (1998) Multiple Regression: A Primer. Pine Forge Press, Thousand Oaks.
|
[17]
|
Little, R.J.A. (1992) Regression with Missing X’s: A Review. Journal of the American Statistical Association, 87, 1227-1237.
|
[18]
|
Greenland, S. and Finkle, W.D. (1995) A Critical Look at Methods for Handling Missing Covariates in Epidemiologic Regression Analyses. American Journal of Epidemiology, 142, 1255-1264.
|
[19]
|
Schafer, J.L. and Graham, J.W. (2002) Missing Data: Our View of the State of the Art. Psychological Methods, 7, 147-177. http://dx.doi.org/10.1037/1082-989X.7.2.147
|
[20]
|
Carpenter, J., Kenward, M.G., Evans, S. and White, I. (2004) Last Observation Carry-Forward and Last Observation Analysis. Statistics in Medicine, 23, 3241-3242. http://dx.doi.org/10.1002/sim.1891
|
[21]
|
Cook, R.J., Zeng, L.L. and Yi, G.Y. (2004) Marginal Analysis of Incomplete Longitudinal Binary Data: A Cautionary Note on LOCF Imputation. Biometrics, 60, 820-828. http://dx.doi.org/10.1111/j.0006-341X.2004.00234.x
|
[22]
|
Jansen, I., Beunckens, C., Molenberghs, G., Verbeke, G. and Mallinckrodt, C. (2006) Analyzing Incomplete Discrete Longitudinal Clinical Trial Data. Statistical Science, 21, 52-69. http://dx.doi.org/10.1214/088342305000000322
|
[23]
|
Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons Inc., New York.
http://dx.doi.org/10.1002/9780470316696
|
[24]
|
Tabachnick, B.G. and Fidell, L.S. (2000) Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC, Boca Raton.
|
[25]
|
Molenberghs, G., Thijs, H., Jansen, I., et al. (2004) Analyzing Incomplete Longitudinal Clinical Trial Data. Biostatistics, 5, 445-464. http://dx.doi.org/10.1093/biostatistics/kxh001
|
[26]
|
Shao, J. and Zhong, B. (2003) Last Observation Carry-Forward and Last Observation Analysis. Statistics in Medicine, 22, 2429-2441. http://dx.doi.org/10.1002/sim.1519
|
[27]
|
Mallinckrodt, C.H., Clark, W.S. and David, S.R. (2001) Accounting for Dropout Bias Using Mixed-Effects Models. Journal of Biopharmaceutical Statistics, 11, 9-21. http://dx.doi.org/10.1081/BIP-100104194
|
[28]
|
Mallinckrodt, C.H., Kaiser, C.J., Watkin, J.G., Detke, M.J., Molenberghs, G. and Carroll, R.J. (2004) Type I Error Rates from Likelihood-Based Repeated Measures Analyses of Incomplete Longitudinal Data. Pharmaceutical Statistics, 3, 171-186. http://dx.doi.org/10.1002/pst.131
|
[29]
|
Gadbury, G.L., Coffey, C.S. and Allison, D.B. (2003) Modern Statistical Methods for Handling Missing Repeated Measurements in Obesity Trials: Beyond LOCF. Obesity Reviews, 4, 175-184.
http://dx.doi.org/10.1046/j.1467-789X.2003.00109.x
|
[30]
|
Rubin, D.B. (1977) Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys. Journal of the American Statistical Association, 72, 538-543. http://dx.doi.org/10.1080/01621459.1977.10480610
|
[31]
|
Schafer, J.L. (1997) The Analysis of Incomplete Multivariate Data. Chapman & Hall, London.
http://dx.doi.org/10.1201/9781439821862
|
[32]
|
Schafer, J.L. (2000) Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC, Boca Raton.
|
[33]
|
Rubin, D.B. (2004) Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons Inc., New York.
|
[34]
|
Bodner, T.E. (2008) What Improves with Increased Missing Data Imputations? Structural Equation Modeling: A Multidisciplinary Journal, 15, 651-675. http://dx.doi.org/10.1080/10705510802339072
|
[35]
|
Dmitrienko, A., Molenberghs, G., Chuang-Stein, C. and Offen, W. (2005) Analysis of Clinical Trials Using SAS: A Practical Guide. SAS Institute Inc., Cary.
|
[36]
|
Yuan, Y.C. (2000) Multiple Imputation for Missing Data: Concepts and New Development. SAS Institute Inc., Rockville.
|
[37]
|
Allison, P.D. (2000) Multiple Imputation for Missing Data: A Cautionary Tale. Sociological Methods and Research, 28, 301-309. http://dx.doi.org/10.1177/0049124100028003003
|
[38]
|
Huang, R. and Carriere, K.C. (2006) Comparison of Methods for Incomplete Repeated Measures Data Analysis in Small Samples. Journal of Statistical Planning and Inference, 136, 235-247.
http://dx.doi.org/10.1016/j.jspi.2004.06.005
|
[39]
|
Unnebrink, K. and Windeler, J. (2001) Intention-to-Treat: Methods for Dealing with Missing Values in Clinical Trials of Progressively Deteriorating Diseases. Statistics in Medicine, 20, 3931-3946. http://dx.doi.org/10.1002/sim.1149
|
[40]
|
Halabi, S., Wun, C.C. and Davis, B.R. (2003) Analysis of Survival Data with Missing Measurements of a Time-Dependent Binary Covariate. Journal of Biopharmaceutical Statistics, 13, 253-270.
http://dx.doi.org/10.1081/BIP-120019270
|
[41]
|
Kenward, M.G. and Molenberghs, G. (2009) Last Observation Carried Forward: A Crystal Ball? Journal of Biopharmaceutical Statistics, 19, 872-888. http://dx.doi.org/10.1080/10543400903105406
|