Probabilistic Fuzzy Control of Mobile Robots for Range Sensor Based Reactive Navigation

DOI: 10.4236/ica.2011.22009   PDF   HTML     5,263 Downloads   8,489 Views   Citations


In this paper, a probabilistic fuzzy approach is proposed for mobile-robot reactive navigation using range sensors. The primary motivation is an integrated reactive navigation control system with good real-time performance under uncertainty. To accomplish this aim, a probabilistic fuzzy logic system (PFLS) is introduced to range measurement and reactive navigation in local environments. PFLS is first adopted to handle the fuzzy and stochastic uncertainties in range sensors and to provide more precise distance information in unknown environments. Consequently these sensor data are sent to a probabilistic fuzzy rule-based inference system with reactive behaviors for local navigation. The feasibility and effectiveness of the proposed approach are verified by simulation and the experiments on a real mobile robot.

Share and Cite:

C. Chen and T. Xiao, "Probabilistic Fuzzy Control of Mobile Robots for Range Sensor Based Reactive Navigation," Intelligent Control and Automation, Vol. 2 No. 2, 2011, pp. 77-85. doi: 10.4236/ica.2011.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Park and S. Hashimoto, “Autonomous Mobile Robot Navigation Using Passive RFID in Indoor Environment,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 7, 2009, pp. 2366-2373. doi:10.1109/TIE.2009.2013690
[2] C. Chen, H. X. Li and D. Dong, “Hybrid Control for Robot Navigation—A Hierarchical Q-Learning Algorithm,” IEEE Robotics & Automation Magazine, Vol. 15, No. 2, 2008, pp. 37-47.
[3] T. W. Manikas, K. Ashenayi and R. L. Wainwright, “Genetic Algorithms for Autonomous Robot Navigation,” IEEE Instrumentation & Measurement Magazine, Vol. 10, No. 6, 2007, pp. 26-31. doi:10.1109/MIM.2007.4428579
[4] A. Foka and P. Trahanias, “Real-Time Hierarchical Pomdps for Autonomous Robot Navigation,” Robotics and Autonomous Systems, Vol. 55, No. 7, 2007, pp. 561-571. doi:10.1016/j.robot.2007.01.004
[5] J. A. Fernandez-Leon, G. G. Acosta and M. A. Mayosky, “Behavioral Control through Evolutionary Neurocontrollers for Autonomous Mobile Robot Navigation,” Robotics and Autonomous Systems, Vol. 57, No. 4, 2009, pp. 411-419. doi:10.1016/j.robot.2008.06.012
[6] A. M. Zhu and S. X. Yang, “Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments,” IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, Vol. 37, No. 4, 2007, pp. 610-621. doi:10.1109/TSMCC.2007.897499
[7] A. Elfes, “Sonar Based Real World Mapping and Navigation,” IEEE Journal of Robotics and Automation, Vol. RA-3, No. 3, 1987, pp. 249-265. doi:10.1109/JRA.1987.1087096
[8] J. Borenstein and Y. Koren, “Real-Time Obstacle Avoidance for Fast Mobile Robot,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 19, No. 5, 1989, pp. 1179-1187. doi:10.1109/21.44033
[9] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, Vol. 2, No. 1, 1986, pp.14-23. doi:10.1109/JRA.1986.1087032
[10] M. F. Selekwa, D. D. Dunlap, D. Shi and E. G. Collins, “Robot Navigation in Very Cluttered Environments by Preference-Based Fuzzy Behaviors,” Robotics and Autonomous Systems, Vol. 56, No. 3, 2008, pp. 231-246. doi:10.1016/j.robot.2007.07.006
[11] M. Wang and J. N. K. Liu, “Fuzzy Logic-Based Real-Time Robot Navigation in Unknown Environment,” Robotics and Autonomous Systems, Vol. 56, No. 7, 2008, pp. 625-643. doi:10.1016/j.robot.2007.10.002
[12] Sv. Noykov and Ch. Roumenin, “Calibration and Interface of a Polaroid Ultrasonic Sensor for Mobile Robots,” Sensors and Actuators A, Vol. 135, No. 1, 2007, pp. 169-178. doi:10.1016/j.sna.2006.07.006
[13] A. Brooks, A. Makarenko and B. Upcroft, “Gaussian Process Models for Indoor and Outdoor Sensor-Centric Robot Localization,” IEEE Transactions on Robotics, Vol. 24, No. 6, 2008, pp. 1341-1351. doi:10.1109/TRO.2008.2004887
[14] T. Yang and V. Aitken, “Evidential Mapping for Mobile Robots with Range Sensors,” IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 4, 2006, pp. 1422-1429. doi:10.1109/TIM.2006.876399
[15] L. W. Finkelstein, “Strongly and Weakly Defined Measurement,” Measurement, Vol. 34, No. 1, 2003, pp. 39-48. doi:10.1016/S0263-2241(03)00018-6
[16] Z. Godec, “Standard Uncertainty in Each Measurement Result Explicit or Implicit”, Measurement, Vol. 20, No. 2, 1997, pp. 97-101. doi:10.1016/S0263-2241(97)00020-1
[17] C. Chen, D. Dong, Z. Chen, H. Wang, “Grey Systems for Intelligent Sensors and Information Processing,” Journal of Systems Engineering and Electronics, Vol. 19, No. 4, 2008, pp. 659-665. doi:10.1016/S1004-4132(08)60135-8
[18] S. Thrun, “Probabilistic Algorithms in Robotics,” AI Magazine, Vol. 21, No. 4, 2000, pp. 93-109.
[19] D. Fox, W. Burgard, H. Kruppa and S. Thrun, “A Probabilistic Approach to Collaborative Multi-Robot Localization,” Autonomous Robots, Vol. 8, 2000, pp. 325-344. doi:10.1023/A:1008937911390
[20] L. A. Zadeh, “Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic,” Fuzzy Sets and Systems, Vol. 90, No. 2, 1997, pp. 111-127. doi:10.1016/S0165-0114(97)00077-8
[21] J. Mendel and R. B. John, “Type-2 Fuzzy Sets Made Simple”, IEEE Transactions on Fuzzy Systems, Vol. 10, No. 2, 2002, pp. 117-127. doi:10.1109/91.995115
[22] J. M. Mendel, “Type-2 Fuzzy Sets and Systems: An Overview,” IEEE Computational Intelligence Magazine, Vol. 2, No. 1, 2007, pp.20-29. doi:10.1109/MCI.2007.380672
[23] H. Hagras, “A Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots”, IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, 2004, pp. 524-539. doi:10.1109/TFUZZ.2004.832538
[24] C. F. Juang and Y. W. Tsao, “A Type-2 Self-Organizing Neural Fuzzy System and Its FPGA Implementation,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol. 38, No. 6, 2008, pp. 1537-1548. doi:10.1109/TSMCB.2008.927713
[25] Z. Liu and H. X. Li, “A Probabilistic Fuzzy Logic System for Modeling and Control,” IEEE Transactions on Fuzzy Systems, Vol. 13, No. 6, 2005, pp. 848-859. doi:10.1109/TFUZZ.2005.859326
[26] H. X. Li and Z. Liu, “A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling,” IEEE Transactions on Fuzzy Systems, Vol. 16, No. 4, 2008, pp. 898-908. doi:10.1109/TFUZZ.2008.917302
[27] C. Chen, G. Rigatos and D. Dong, “Partial Feedback Control of Quantum Systems Using Probabilistic Fuzzy Estimator,” Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, 16-18 December 2009.
[28] S. Chen and C. Chen, “Probabilistic Fuzzy Logic System for Range Measurement,” The Mediterranean Journal of Measurement and Control, Vol. 5, No. 2, 2009, pp. 119-125.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.