[1]
|
Grilli, M., Barbieri, I., Basudev, H., Brusa, R., Casati, C., Lozza, G. and Ongini, E. (2000) Interleukin-10 Modulates Neuronal Threshold of Vulnerability to Ischaemic Damage. European Journal of Neuroscience, 12, 2265-2272. http://dx.doi.org/10.1046/j.1460-9568.2000.00090.x
|
[2]
|
Boyd, Z.S., Kriatchko, A., Yang, J., Agarwal, N., Wax, M.B. and Patil, R.V. (2003) Interleukin-10 Receptor Signaling through STAT-3 Regulates the Apoptosis of Retinal Ganglion Cells in Response to Stress. Investigative Ophthalmology & Visual Science, 44, 5206-5211. http://dx.doi.org/10.1167/iovs.03-0534
|
[3]
|
Zhou, Z., Peng, X., Insolera, R., Fink, D.J. and Mata, M. (2009) IL-10 Promotes Neuronal Survival Following Spinal Cord Injury. Experimental Neurology, 220, 183-190. http://dx.doi.org/10.1016/j.expneurol.2009.08.018
|
[4]
|
Vidal, P.M., Lemmens, E., Dooley, D. and Hendrix, S. (2013) The Role of “Anti-Inflammatory” Cytokines in Axon Regeneration. Cytokine & Growth Factor Reviews, 24, 1-12. http://dx.doi.org/10.1016/j.cytogfr.2012.08.008
|
[5]
|
Zhou, Z., Peng, X., Insolera, R., Fink, D.J. and Mata, M. (2009) Interleukin-10 Provides Direct Trophic Support to Neurons. Journal of Neurochemistry, 110, 1617-1627. http://dx.doi.org/10.1111/j.1471-4159.2009.06263.x
|
[6]
|
Lang, R., Patel, D., Morris, J.J., Rutschman, R.L. and Murray, P.J. (2002) Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. The Journal of Immunology, 169, 2253-2263. http://dx.doi.org/10.4049/jimmunol.169.5.2253
|
[7]
|
Munder, M., Eichmann, K., Morán, J.M., Centeno, F., Soler, G. and Modolell, M. (1999) Th1/Th2-Regulated Expression of Arginase Isoforms in Murine Macrophages and Dendritic Cells. The Journal of Immunology, 163, 3771-3777.
|
[8]
|
Chu, P.J., Saito, H. and Abe, K. (1995) Polyamines Promote Regeneration of Injured Axons of Cultured Rat Hippocampal Neurons. Brain Research, 673, 233-241. http://dx.doi.org/10.1016/0006-8993(94)01419-I
|
[9]
|
Williams, K. (1997) Interactions of Polyamines with Ion Channels. Biochemical Journal, 325, 289-297.
|
[10]
|
Pellegrini-Giampietro, D.E. (2003) An Activity-Dependent Spermine-Mediated Mechanism That Modulates Glutamate Transmission. Trends in Neurosciences, 26, 9-11. http://dx.doi.org/10.1016/S0166-2236(02)00004-8
|
[11]
|
Liu, P., Gupta, N., Jing, Y. and Zhang, H. (2008) Age-Related Changes in Polyamines in Memory-Associated Brain Structures in Rats. Neuroscience, 155, 789-796. http://dx.doi.org/10.1016/j.neuroscience.2008.06.033
|
[12]
|
Mori, M. and Gotoh, T. (2000) Regulation of Nitric Oxide Production by Arginine Metabolic Enzymes. Biochemical and Biophysical Research Communications, 275, 715-719. http://dx.doi.org/10.1006/bbrc.2000.3169
|
[13]
|
Estévez, A.G., Sahawneh, M.A., Lange, P.S., Bae, N., Egea, M. and Ratan, R.R. (2006) Arginase 1 Regulation of Nitric Oxide Production Is Key to Survival of Trophic Factor-Deprived Motor Neurons. The Journal of Neuroscience, 26, 8512-8516. http://dx.doi.org/10.1523/JNEUROSCI.0728-06.2006
|
[14]
|
Wiesinger, H. (2001) Arginine Metabolism and the Synthesis of Nitric Oxide in the Nervous System. Progress in Neurobiology, 64, 365-391. http://dx.doi.org/10.1016/S0301-0082(00)00056-3
|
[15]
|
Lange, P.S., Langley, B., Lu, P. and Ratan, R.R. (2004) Novel Roles for Arginase in Cell Survival, Regeneration, and Translation in the Central Nervous System. Journal of Nutrition, 134, 2812S-2817S.
|
[16]
|
Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J.W., Wang, Y.T., Salter, M.W. and Tymianski, M. (2002) Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor-PSD-95 Protein Interactions. Science, 298, 846-850. http://dx.doi.org/10.1126/science.1072873
|
[17]
|
Wang, H. and Zhuo, M. (2012) Group I Metabotropic Glutamate Receptor-Mediated Gene Transcription and Implications for Synaptic Plasticity and Diseases. Frontiers in Pharmacology, 3, 189. http://dx.doi.org/10.3389/fphar.2012.00189
|
[18]
|
Maiese, K., Vincent, A., Lin, S.H. and Shaw, T. (2000) Group I and Group III Metabotropic Glutamate Receptor Subtypes Provide Enhanced Neuroprotection. Journal of Neuroscience Research, 62, 257-272.
|
[19]
|
Maiese, K., Chong, Z.Z. and Li, F. (2005) Driving Cellular Plasticity and Survival through the Signal Transduction Pathways of Metabotropic Glutamate Receptors. Current Neurovascular Research, 2, 425-446. http://dx.doi.org/10.2174/156720205774962692
|
[20]
|
Chen, T., Cao, L., Dong, W., Luo, P., Liu, W., Qu, Y. and Fei, Z. (2012) Protective Effects of mGluR5 Positive Modulators against Traumatic Neuronal Injury through PKC-Dependent Activation of MEK/ERK Pathway. Neurochemical Research, 37, 983-990. http://dx.doi.org/10.1007/s11064-011-0691-z
|
[21]
|
Byrnes, K.R., Loane, D.J. and Faden, A.I. (2009) Metabotropic Glutamate Receptors as Targets for Multipotential Treatment of Neurological Disorders. Neurotherapeutics, 6, 94-107. http://dx.doi.org/10.1016/j.nurt.2008.10.038
|
[22]
|
Hollingsworth, E.B., McNeal, E.T., Burton, J.L., Williams, R.J., Daly, J.W. and Creveling, C.R. (1985) Biochemical Characterization of a Filtered Synaptoneurosome Preparation from Guinea Pig Cerebral Cortex: Cyclic Adenosine 3’: 5’-Monophosphate-Generating Systems, Receptors, and Enzymes. Journal of Neuroscience, 5, 2240-2253.
|
[23]
|
Weiler, I.J., Spangler, C.C., Klintsova, A.Y., Grossman, A.W., Kim, S.H., Bertaina-Anglade, V., Khaliq, H., de Vries, F.E., Lambers, F.A., Hatia, F., Base, C.K. and Greenough, W.T. (2004) Fragile X Mental Retardation Protein Is Necessary for Neurotransmitter-Activated Protein Translation at Synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 17504-17509. http://dx.doi.org/10.1073/pnas.0407533101
|
[24]
|
Benavides, J., Claustre, Y. and Scatton, B. (1988) L-Glutamate Increases Internal Free Calcium Levels in Synaptoneurosomes from Immature Rat Brain via Quisqualate Receptors. Journal of Neuroscience, 8, 3607-3615.
|
[25]
|
Muddashetty, R.S., Kelic, S., Gross, C., Xu, M. and Bassell, G.J. (2007) Dysregulated Metabotropic Glutamate Receptor-Dependent Translation of AMPA Receptor and Postsynaptic Density-95 mRNAs at Synapses in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 27, 5338-5348. http://dx.doi.org/10.1523/JNEUROSCI.0937-07.2007
|
[26]
|
Kim, S.H., Fraser, P.E., Westaway, D., St. George-Hyslop, P.H., Ehrlich, M.E. and Gandy, S. (2010) Group II Metabotropic Glutamate Receptor Stimulation Triggers Production and Release of Alzheimer’s Amyloid β42 from Isolated Intact Nerve Terminals. Journal of Neuroscience, 30, 3870-3875. http://dx.doi.org/10.1523/JNEUROSCI.4717-09.2010
|
[27]
|
Mesquita, A.R., Correia-Neves, M., Castroa, A.G.R., Vieira, P., Pedrosaa, J., Palhaa, J.A. and Sousaa, N. (2008) IL-10 Modulates Depressive-Like Behavior. Journal of Psychiatric Research, 43, 89-97. http://dx.doi.org/10.1016/j.jpsychires.2008.02.004
|
[28]
|
Xin, J., Wainwright, D.A., Mesnard, N.A., Serpe, C.J., Sanders, V.M. and Jones, K.J. (2011) IL-10 within the CNS Is Necessary for CD4+ T Cells to Mediate Neuroprotection. Brain, Behavior, and Immunity, 25, 820-829. http://dx.doi.org/10.1016/j.bbi.2010.08.004
|
[29]
|
Sethi, R., Chava, R.S., Bashir, S. and Castro, E.M. (2011) An Improved High Performance Liquid Chromatographic Method for Identification and Quantization of Polyamines as Benzoylated Derivatives. American Journal of Analytical Chemistry, 2, 456-469. http://dx.doi.org/10.4236/ajac.2011.24055
|
[30]
|
Yu, H., Iyer, R.K., Kern, R.M., Rodriguez, W.I., Grody, W.W. and Cederbaum, S.D. (2001) Expression of Arginase Isozymes in Mouse Brain. Journal of Neuroscience Research, 66, 406-422. http://dx.doi.org/10.1002/jnr.1233
|
[31]
|
Rameau, G.A., Chiu, L.Y. and Ziff, E.B. (2003) NMDA Receptor Regulation of nNOS Phosphorylation and Induction of Neuron Death. Neurobiology of Aging, 24, 1123-1133. http://dx.doi.org/10.1016/j.neurobiolaging.2003.07.002
|
[32]
|
Nicoletti, F., Bockaert, J., Collingridge, G.L., Conn, P.J., Ferraguti, F., Schoepp, D.D., Wroblewski, J.T. and Pin, J.P. (2011) Metabotropic Glutamate Receptors: From the Workbench to the Bedside. Neuropharmacology, 60, 1017-1041. http://dx.doi.org/10.1016/j.neuropharm.2010.10.022
|
[33]
|
Kelly, A., Lynch, A., Vereker, E., Nolan, Y., Queenan, P., Whittaker, E., O’Neill, L.A. and Lynch, M.A. (2001) The Anti-Inflammatory Cytokine, Interleukin (IL)-10, Blocks the Inhibitory Effect of IL-1β on Long Term Potentiation. A Role for JNK. The Journal of Biological Chemistry, 276, 45564-45572. http://dx.doi.org/10.1074/jbc.M108757200
|
[34]
|
Traynelis, S.F., Hartley, M. and Heinemann, S.F. (1995) Control of Proton Sensitivity of the NMDA Receptor by RNA Splicing and Polyamines. Science, 268, 873-876. http://dx.doi.org/10.1126/science.7754371
|
[35]
|
Choi, Y.B., Tenneti, L., Le, D.A., Ortiz, J., Bai, G., Chen, H.S. and Lipton, S.A. (2000) Molecular Basis of NMDA Receptor-Coupled Ion Channel Modulation by S-Nitrosylation. Nature Neuroscience, 3, 15-21. http://dx.doi.org/10.1038/71090
|
[36]
|
Knoblach, S.M. and Faden, A.I. (1998) Interleukin-10 Improves Outcome and Alters Proinflammatory Cytokine Expression after Experimental Traumatic Brain Injury. Experimental Neurology, 153, 143-151. http://dx.doi.org/10.1006/exnr.1998.6877
|
[37]
|
Sharma, S., Yang, B., Xi, X., Grotta, J.C., Aronowski, J. and Savitz, S.I. (2011) IL-10 Directly Protects Cortical Neurons by Activating PI-3 Kinase and STAT-3 Pathways. Brain Research, 1373, 189-194. http://dx.doi.org/10.1089/neu.2012.2651
|
[38]
|
Thompson, C.D., Zurko, J.C., Hanna, B.F., Hellenbrand, D.J. and Hanna, A. (2013) The Therapeutic Role of Interleukin-10 after Spinal Cord Injury. Journal of Neurotrauma, 30, 1311-1324. http://dx.doi.org/10.1089/neu.2012.2651
|
[39]
|
Perez-Asensio, F.J., Perpiná, U., Planas, A.M. and Pozas, E. (2013) Interleukin-10 Regulates Progenitor Differentiation and Modulates Neurogenesis in Adult Brain. Journal of Cell Science, 126, 4208-4219. http://dx.doi.org/10.1242/jcs.127803
|
[40]
|
Steinert, J.R., Chernova, T. and Forsythe, I.D. (2010) Nitric Oxide Signaling in Brain Function, Dysfunction, and Dementia. The Neuroscientist, 16, 435-452. http://dx.doi.org/10.1177/1073858410366481
|
[41]
|
Bhardwaj, A., Northington, F.J., Martin, L.J., Hanley, D.F., Traystma, R.J. and Koehler, R.C. (1997) Characterization of Metabotropic Glutamate Receptor-Mediated Nitric Oxide Production in Vivo. Journal of Cerebral Blood Flow & Metabolism, 17, 153-160.
|
[42]
|
Llansola, M. and Felipo, V. (2010) Metabotropic Glutamate Receptor 5, but Not 1, Modulates NMDA Receptor-Mediated Activation of Neuronal Nitric Oxide Synthase. Neurochemistry International, 56, 535-554. http://dx.doi.org/10.1016/j.neuint.2009.12.016
|
[43]
|
Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J. and Dingledine, R. (2010) Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 62, 405-496. http://dx.doi.org/10.1124/pr.109.002451
|
[44]
|
Reynolds, I.J. and Miller, R.J. (1989) Ifenprodil Is a Novel Type of NMDA Receptor Antagonist: Interaction with Polyamines. Molecular Pharmacology, 36, 758-765.
|
[45]
|
Sharma, T.A. and Reynolds, I.J. (1999) Characterization of the Effects of Polyamines on [125I]MK-801 Binding to Recombinant N-Methyl-D-Aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 289, 1041-1047.
|
[46]
|
O’Shea, J.J., Pesu, M., Borie, D.C. and Changelian, P.S. (2004) A New Modality for Immunosuppression: Targeting the JAK/STAT Pathway. Nature Reviews Drug Discovery, 3, 555-564. http://dx.doi.org/10.1038/nrd1441
|
[47]
|
Sica, A. and Bronte, V. (2007) Altered Macrophage Differentiation and Immune Dysfunction in Tumor Development. Journal of Clinical Investigation, 117, 1155-1166. http://dx.doi.org/10.1172/JCI31422
|
[48]
|
Gotoh, T., Chowdhury, S., Takiguchi, M. and Mori, M. (1997) The Glucocorticoid-Responsive Gene Cascade. Activation of the Rat Arginase Gene through Induction of C/EBPβ. The Journal of Biological Chemistry, 272, 3694-3698. http://dx.doi.org/10.1074/jbc.272.6.3694
|
[49]
|
Oliva Jr., A.A., Kang, Y., Sanchez-Molano, J., Furones, C. and Atkins, C.M. (2012) STAT3 Signaling after Brain Injury. Journal of Neurochemistry, 120, 710-720. http://dx.doi.org/10.1111/j.1471-4159.2011.07610.x
|
[50]
|
Ramji, D.P. and Foka, P. (2002) CCAAT/Enhancer-Binding Proteins: Structure, Function and Regulation. Biochemical Journal, 365, 561-575.
|
[51]
|
Crepaldi, L., Lackner, C., Corti, C. and Ferraguti, F. (2007) Transcriptional Activators and Repressors for the Neuron-specific Expression of a Metabotropic Glutamate Receptor. The Journal of Biological Chemistry, 282, 17877-17889. http://dx.doi.org/10.1074/jbc.M700149200
|
[52]
|
Kfoury, N. and Kapatos, G. (2009) Identification of Neuronal Target Genes for CCAAT/Enhancer Binding Proteins. Molecular and Cellular Neuroscience, 40, 313-327. http://dx.doi.org/10.1016/j.mcn.2008.11.004
|
[53]
|
Ferraguti, F., Crepaldi, L. and Nicoletti, F. (2008) Metabotropic Glutamate 1 Receptor: Current Concepts and Perspectives. Pharmacological Reviews, 60, 536-581. http://dx.doi.org/10.1124/pr.108.000166
|