Share This Article:

The Transformation of a Schwarzschild Black Hole Linear Perturbations to Bondi Frame

Abstract Full-Text HTML XML Download Download as PDF (Size:2578KB) PP. 1767-1778
DOI: 10.4236/jmp.2014.516174    3,473 Downloads   3,848 Views  

ABSTRACT

We extend standard linear perturbations of a Schwarzschild black hole by Chandrasekhar to Bondi frame by transforming both even and odd parity perturbations when angular momentum l = 2.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Kubeka, A. and Bishop, N. (2014) The Transformation of a Schwarzschild Black Hole Linear Perturbations to Bondi Frame. Journal of Modern Physics, 5, 1767-1778. doi: 10.4236/jmp.2014.516174.

References

[1] Seidel, E. (1998) Numerical Relativity: Towards Simulations of 3D Black Hole Coalescence. In: Iyer, B. and Bhawal, B., Eds., On the Black Hole Trail, Kluwer, Report-No.: AEI-066.
[2] Seidel, E. (1998) Plenary Talk Given at GR15. Proceedings of the GR-15 Conference, Poona, Report-No.: AEI-071.
[3] Arnowitt, R., Deser, S. and Misner, C.W. (1962) Gravitation: An Introduction to Current Research. Wiley, New York.
[4] York, J.W. (1979) Sources of Gravitational Radiation. Cambridge University Press, Seatle.
[5] Bondi, H., van der Burg, M.J.G. and Metzner, A.W.K. (1962) Proceedings of the Royal Society London A, 269, 21-52.
http://dx.doi.org/10.1098/rspa.1962.0161
[6] Sachs, R.K. (1962) Proceedings of the Royal Society London A, 270, 103-126.
http://dx.doi.org/10.1098/rspa.1962.0206
[7] Bartnik, R. (1997) Classical and Quantum Gravity, 14, 2185-2194.
http://dx.doi.org/10.1088/0264-9381/14/8/017
[8] Bishop, N.T., Gomez, R., Husa, S., Lehner, L. and Winicour, J. (2003) Physical Review D, 68, Article ID: 084015.
http://dx.doi.org/10.1103/PhysRevD.68.084015
[9] Bishop, N.T. and Deshingkar, S.S. (2003) Physical Review D, 68, Article ID: 024031.
http://dx.doi.org/10.1103/PhysRevD.68.024031
[10] d'Inverno, R.A., Dubal, M.R. and Sarkies, E.A. (2001) Classical and Quantum Gravity, 17, 3157-3170.
http://dx.doi.org/10.1088/0264-9381/17/16/305
[11] Gomez, R. (2001) Physical Review D, 64, Article ID: 024007.
http://dx.doi.org/10.1103/PhysRevD.64.024007
[12] Siebel, F., Font, J.A., Muller, E. and Papadopoulos, P. (2003) Physical Review D, 67, Article ID: 124018.
http://dx.doi.org/10.1103/PhysRevD.67.124018
[13] Sachs, R.K. (1963) Physical Review Letters, 150, 66.
[14] Bishop, N.T., Gomez, R., Lehner, L., Maharaj, M. and Winicour, J. (1997) Physical Review D, 56, 6298.
http://dx.doi.org/10.1103/PhysRevD.56.6298
[15] Gomez, R., Lehner, L., Papadopoulos, P. and Winicour, J. (1997) Classical and Quantum Gravity, 14, 977-990.
http://dx.doi.org/10.1088/0264-9381/14/4/013
[16] Bishop, N.T. (2005) Classical and Quantum Gravity, 22, 2393-2406.
http://dx.doi.org/10.1088/0264-9381/22/12/006
[17] Chandrasekhar, S. and Friedmann, J.L. (1972) Astrophysical Journal, 175, 379.
http://dx.doi.org/10.1086/151566
[18] Venter, L.R. and Bishop, N.T. (2006) Physical Review D, 73, Article ID: 084023.
http://dx.doi.org/10.1103/PhysRevD.73.084023

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.