Radio Coverage Mapping in Wireless Sensor Networks

Abstract

Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The existing approaches (often RSSI measurement-based), however, suffer from heavy measurement cost and are not well suitable for the large-scale densely deployed WSNs. NRC-Map, a novel algorithm is put forward for sensor nodes radio coverage mapping. The algorithm is based on the RSSI values collected by the neighbor nodes. According to the spatial relationship, neighbor nodes are mapping to several overlapped sectors. By use of the least squares fitting method, a log-distance path loss model is established for each sector. Then, the max radius of each sector is computed according to the path loss model and the given signal attenuation threshold. Finally, all the sectors are overlapped to estimate the node radio coverage. Experimental results show that the method is simple and effectively improve the prediction accuracy of the sensor node radio coverage.

Share and Cite:

Nie, Y. , Chen, C. and Wang, C. (2014) Radio Coverage Mapping in Wireless Sensor Networks. Wireless Sensor Network, 6, 205-211. doi: 10.4236/wsn.2014.610020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002) Wireless Sensor Networks: A Survey. Computer Networks, 38, 393-422.
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
[2] Meguerdichian, S., Koushanfar, F., Potkonjak, M. and Srivastava, M. (2001) Coverage Problems in Wireless Ad-Hoc Sensor Networks. IEEE Infocom, 3, 1380-1387.
[3] Abrams, Z., Goel, A. and Plotkin, S. (2004) Set k-Cover Algorithms for Energy Efficient Monitoring in Wireless Sensor Networks. Proceedings of the 3rd International Conference on Information Processing in Sensor Networks, Berkeley, 26-27 April 2004, 424-432.
[4] Carbunar, B., Grama, A., Vitek, A. and Carbunar, O. (2004) Coverage Preserving Redundancy Elimination in Sensor Networks. Proceedings of the 1st IEEE Conference on Sensor and Ad Hoc Radios and Networks, 4-7 October 2004, 377-386.
[5] Liu, M., Cao, J.N., Zheng, Y., Chen, L.J. and Xie, L. (2007) Analysis for Multi-Coverage Problem in Wireless Sensor Networks. Journal of Software, 18, 127-136.
http://dx.doi.org/10.1360/jos180127
[6] Mao, Y.C., Feng, G.F., Chen, L.J. and Chen, D.X. (2007) A Location-Independent Connected Coverage Protocol for Wireless Sensor Networks. Journal of Software, 18, 1672-1684.
http://dx.doi.org/10.1360/jos181672
[7] Qu, Y.G., Li, Z.T. and Zhao, B.H. (2007) WPCS Coverage Strategy for Wireless Sensor Network. Journal of Electronic & Information Technology, 29, 767-770.
[8] Jiang, J., Fang, L., Zhang, H.Y. and Dou, W.H. (2006) An Algorithm for Minimal Connected Cover Set Problem in Wireless Sensor Networks. Journal of Software, 17, 175-184.
http://dx.doi.org/10.1360/jos170175
[9] Cui, L., Ju, H.L., Miao, Y., Li, T.P., Liu, W. and Zhao, Z. (2005) Overview of Wireless Sensor Networks. Journal of Computer Research and Development, 42, 163-174.
http://dx.doi.org/10.1360/crad20050121
[10] Liu, L.P., Wang, Z. and Sun, Y.X. (2006) Survey on Coverage in Wireless Sensor Networks Deployment. Journal of Electronics & Information Technology, 28, 1752-1757.
[11] Fang, Z., Zhao, Z., Guo, P. and Zhang, Y.G. (2007) Analysis of Distance Measurement Based on RSSI. Chinese Journal of Sensors and Actuators, 20, 2526-2530.
[12] Wu, C.H. and Chung, Y.C. (2007) Heterogeneous Wireless Sensor Network Deployment and Topology Control Based on Irregular Sensor Model. Advances in Grid and Pervasive Computing, 4459, 78-88.
[13] Zhou, G., He, T., Krishnamurthy, S. and Stankovic, J.A. (2006) Models and Solutions for Radio Irregularity in Wireless Sensor Networks. ACM Transactions on Sensor Networks (TOSN), 2, 221-262.
http://dx.doi.org/10.1145/1149283.1149287
[14] He, T., Huang, C., Blum, B.M., Stankovic, J.A. and Abdelzaher, T. (2003) Range-Free Localization Schemes for Large Scale Sensor Networks. Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom), San Diego, 14-19 September 2003, 81-95.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.