eHealth Management Platform for Screening and Prediction of Down’s Syndrome in the Republic of Panama

Abstract

Through engineering projects, we have integrated software engineering, geographical information systems and HL7 standard to propose a model of an eHealth management platform for Down’s syndrome screening, replicable in all the country. It will use real time sample information acquired from the local population and will geographically reference this information in the territory of Panama for future research.

Share and Cite:

Saldaña, J. and Vargas-Lombardo, M. (2014) eHealth Management Platform for Screening and Prediction of Down’s Syndrome in the Republic of Panama. E-Health Telecommunication Systems and Networks, 3, 33-42. doi: 10.4236/etsn.2014.33005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Esri, A. (2011) HL7 and Spatial Interoperability Standards for Public Health and Health Care Delivery.
[2] Fernández, A. and Oviedo, E. (2011) E-Health in Latin America and the Caribbean.
[3] Fonseca, J.M., Mora, A.D. and Barroso, P. (2007) The Web and the New Generation of Medical Information Systems. Journal Outcome Prediction in Cancer, 391-414.
[4] Typolog, S. (2014) Typolog Software. Online.
http://www.typolog.de/SharedDatabase.html
[5] Benn, P.A. (2002) Advances in Prenatal Screening for Down Syndrome: I. General Principles and Second Trimester testing. Clinica Chimica Acta, 323, 1-16
[6] Fuentes, M.N. (2011) Screening de aneuploidías del primer trimester. 1-18.
[7] Gyselaers, W.J.A., Vereecken, A.J., Van Herck, E.J.H., Straetmans, D.P.L., Martens, G.E.I., de Jonge, E.T.M., Ombelet, W.U.A.M. and Nijhuis, J.G. (2004) Screening for Trisomy 21 in Flanders: A 10 Years Review of 40.490 Pregnancies Screened by Maternal Serum. European Journal of Obstetrics & Gynecology and Reproductive Biology, 115, 185-189.
http://dx.doi.org/10.1016/j.ejogrb.2003.12.014
[8] Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J. and Linkman, S. (2009) Systematic Literature Reviews in Software Engineering—A Systematic Literature Review. Information and Software Technology, 51, 7-15.
http://dx.doi.org/10.1016/j.infsof.2008.09.009
[9] Khalifa, M. (2013) Barriers to Health Information Systems and Electronic Medical Records Implementation. A Field Study of Saudi Arabian Hospitals. ProcediaComput. Sci., 21, 335-342.
[10] Greenfield, J. (2013) Designing and Implementing an HL7 Software Factory. 1-7.
[11] Zrnec, A. (2011) Software Engineering in the Cloud for Reducing the Application Time-to-Market. Vol. 78, 123-127.
[12] Dande, A.C. and Sunder, G. (2009) Suitability of HL7 v3 in Building an EHR System. 3-6.
[13] Geissbuhler, A. (2013) Lessons Learned Implementing a Regional Health Information Exchange in Geneva as a Pilot for the Swiss National eHealth Strategy. International Journal of Medical Informatics, 82, e118-e124.
http://dx.doi.org/10.1016/j.ijmedinf.2012.11.002
[14] Aguilar, R. and López, D. (2009) Guia de Implementación HL7 parasistemas de notificaciónobligatoria en Salud Pública en Colombia. 13-32.
[15] Tudor, C.R.P.H. (2011) Project eSanté Architecture and Security of a National eHealth Platform.
[16] Vargas, J.D.L., Velez, D.P. and Bustamante, F.P. (2013) Estudio y desarrollo de un sistema que implementa el estándar hl7 de registros médicos generales y envia comentarios por mensajes de texto.
[17] Duftschmid, G., Rinner, C., Kohler, M., Huebner-Bloder, G., Saboor, S. and Ammenwerth, E. (2013) The EHR-ARCHE Project: Satisfying Clinical Information Needs in a Shared Electronic Health Record System Based on IHE XDS and Archetypes. International Journal of Medical Informatics, 82, 1195-1207.
http://dx.doi.org/10.1016/j.ijmedinf.2013.08.002
[18] Granell, C., Fernández, ó.B. and Díaz, L. (2014) Geospatial Information Infrastructures to Address Spatial Needs in Health: Collaboration, Challenges and Opportunities. Future Generation Computer Systems, 31, 213-222.
http://dx.doi.org/10.1016/j.future.2013.04.002
[19] Cooper, A., Reimann, R. and Cronin, D. (2004) About Face 3.0: The Essentials of Interaction Design, 3, 223-225.
[20] Mettler, T. and Eurich, M. (2012) A “Design-Pattern”-Based Approach for Analyzing e-Health Business Models. Future Generation Computer Systems, 1, 77-85.
http://dx.doi.org/10.1016/j.hlpt.2012.04.005
[21] Peixoto, H., Duarte, J., Abelha, A., Santos, M. and Machado, J. (2012) ScheduleIT-Open-Source Preventive Actions Management Plataform in Healthcare Information Systems. Procedia Technology, 5, 734-742.
http://dx.doi.org/10.1016/j.protcy.2012.09.081
[22] TRC Trisomy Risk Calculator. http://www.sbpsoftware.com/es/trisomy-risk-calculator.html
[23] Roche (2014) Essentials in Down Syndrome Screening.
http://www.roche-diagnostics.ch/content/dam/corporate/roche-dia_ch/documents/broschueren/professional_diagnos-tics/immunologie/praeeklampsie/05109361001_EN_EA_Down-syndrome-screening_Brosch%C3%BCre_EN.pdf
[24] Kraus, C. (2014) Inside Goal-Directed Design: A Two-Part Conversation with Alan Cooper.
http://www.cooper.com/journal/2014/04/inside-goal-directed-design-a-two-part-conversation-with-alan-cooper
[25] Palomaki, G.E. and Haddow, J.E. (1987) Maternal Serum α-Fetoprotein, Age, and Down Syndrome Risk. American Journal of Obstetrics & Gynecology, 156, 460-463.
http://dx.doi.org/10.1016/0002-9378(87)90309-7
[26] Cuckle, H., Wald, N. and Thompson, S. (1988) Estimating a Woman’s Risk of Having a Pregnancy Associated with Down’s Syndrome Using Her Age and Serum Alphafetoprotein Level. International Journal of Gynecology and Obstetrics, 26, 336.
http://dx.doi.org/10.1016/0020-7292(88)90310-4
[27] Reynolds, T.M. and Penney, M.D. (1990) The Mathematical Basis of Multivariate Risk Screening: With Special Reference to Screening for Down’s Syndrome Associated Pregnancy. Annals of Clinical Biochemistry, 27, 452-458.
[28] ROCHE (2011) Current Trends in Antenatal Screening for Down’s Syndrome. 175-177.
[29] Yaron, Y., Cherry, M., Kramer, R.L., O’Brien, J.E., Hallak, M., Johnson, M.P. and Evans, M.I. (1999) Second-Trimester Maternal Serum Marker Screening: Maternal Serum α-Fetoprotein, β-Human Chorionic Gonadotropin, Estriol, and Their Various Combinations as Predictors of Pregnancy Outcome. American Journal of Obstetrics & Gynecology, 181, 968-974.
http://dx.doi.org/10.1016/S0002-9378(99)70334-0
[30] Wald, N.J., Cuckle, H.S., Densem, J.W., Nanchahal, K., Royston, P., Chard, T., Haddow, J.E., Knight, G.J., Palomaki, G.E. and Canick, J.A. (1988) Maternal Serun Screening for Down’s Syndrome in Early Pregnancy. Vol. 297, 883-887.
[31] Benn, P.A., Clive, J.M. and Collins, R. (1997) Medians for Second-Trimester Maternal Serum α-Fetoprotein, Human Chorionic Gonadotropin, and Unconjugated Estriol; Differences between Races or Ethnic Groups. Clinical Chemistry, 43, 333-337.
[32] Soft, S.B.P. and Maragall, J. (2007) Programapara la detección de la trisomía 21.
[33] Digital, G.O. (2007) No. 25908 Gaceta Oficial Digital, lunes 29 de octubre de 2007 1. 1-2.
[34] Cuenca, C., Gomez, J. and Scotti, S. (2012) Design an Architecture That Allows the Interoperability between Information Systems, Software or Medical Device Adopting the Standard.
[35] Barbarito, F., Pinciroli, F., Mason, J., Marceglia, S., Mazzola, L. and Bonacina, S. (2012) Implementing Standards for the Interoperability among Healthcare Providers in the Public Regionalized Healthcare Information System of the Lombardy Region. Journal of Biomedical Informatics, 45, 736-745.
http://dx.doi.org/10.1016/j.jbi.2012.01.006
[36] Roncancio, G.E. (2009) Ayudasdesde la red para el control de la epidemia. Infectio, 13, 217-222.
http://dx.doi.org/10.1016/S0123-9392(09)70152-3

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.