On Time-of-Arrival Statistic of Gaussian Channel Model
Alexander G. Flaksman, Ilya M. Averin, Victor T. Ermolayev
DOI: 10.4236/cn.2011.32013   PDF    HTML     4,507 Downloads   8,215 Views  


A model of an angle-spread source, termed the “Gaussian Channel Model” is considered. The cumulative distribution function of the Time-of-Arrival of the multipath components is derived for an arbitrary angle spread. The simple approximate expressions for the Time-of-Arrival cumulative distribution function and probability density function are proposed. Numerical results obtained with the help of the derived expressions show the good coincidence with the experimental data and other known results.

Share and Cite:

A. Flaksman, I. Averin and V. Ermolayev, "On Time-of-Arrival Statistic of Gaussian Channel Model," Communications and Network, Vol. 3 No. 2, 2011, pp. 113-117. doi: 10.4236/cn.2011.32013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. C. Godara, “Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility, and System Considerations,” Proceedings of the IEEE, Vol. 85, No. 7, 1997, pp. 1031-1060. doi:10.1109/5.611108
[2] J. B. Andersen, “Antenna Arrays in Mobile Communications: Gain, Diversity, and Channel Capacity,” IEEE Antennas and Propagation Magazine, Vol. 42, No. 2, 2000, pp. 12-16. doi:10.1109/74.842121
[3] L. C. Godara, “Application of Antenna Arrays to Mobile Communications, Part II: Beam-Forming and Direction-of-Arrival Considerations,” Proceedings of the IEEE, Vol. 85, No. 8, 1997, pp. 1195-1245. doi:10.1109/5.622504
[4] K. T. Wong, Y. I. Wu and M. Abdulla, “Landmobile Radiowave Multipaths’ DOA Distribution: Assessing Geometric Models by the Open Literature’s Empirical Datasets,” IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 2010, pp. 946-958. doi:10.1109/TAP.2009.2037698
[5] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport and J. H. Reed, “Overview of Spatial Channel Models for Antenna Array Communication Systems,” IEEE Personal Communications, Vol. 5, No. 1, February 1998, pp. 10-22. doi:10.1109/98.656151
[6] R. Janaswamy, “Angle and Time of Arrival Statistics for the Gaussian Scatter Density Model,” IEEE Transactions on Wireless Communications, Vol. 1, No. 3, 2002, pp. 488-497. doi:10.1109/TWC.2002.800547
[7] D. D. N. Bevan, V. T. Ermolayev, A. G. Flaksman and I. M. Averin, “Gaussian Channel Model for Mobile Multipath Environment,” EURASIP Journal on Applied Signal Processing, Vol. 2004, No. 9, 2004, pp. 1321-1329. doi:10.1155/S1110865704404028
[8] D. D. N. Bevan, V. T. Ermolayev, A. G. Flaksman, I. M. Averin and P. M. Grant, “Gaussian Channel Model for Macrocellular Mobile Propagation,” Proceedings of 13th European Signal Processing Conference, Antalya, 4-8 September 2005.
[9] K. I. Pedersen, P. E. Mogensen and B. H. Fleury, “A Stochastic Model of the Temporal and Azimuthal Dispersion Seen at the Base Station in Outdoor Propagation Environments,” IEEE Transactions on Vehicular Technology, Vol. 49, No. 2, 2000, pp. 437-447. doi:10.1109/25.832975
[10] K. N. Le, “On Angle-of-Arrival and Time-of-Arrival Statistics of Geometric Scattering Channels,” IEEE Transactions on Vehicular Technology, Vol. 58, No. 9, 2009, pp. 4257-4264. doi:10.1109/TVT.2009.2023255

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.