[1]
|
Geroyannis, V.S. (1988) A Complex-Plane Strategy for Computing Rotating Polytropic Models—Efficiency and Accuracy of the Complex First-Order Perturbation Theory. The Astrophysical Journal, 327, 273-283.
http://dx.doi.org/10.1086/166188
|
[2]
|
Geroyannis, V.S. and Valvi, F.N. (2012) A Runge-Kutta-Fehlberg Code for the Complex Plane: Comparing with Similar Codes by Applying to Polytropic Models. International Journal of Modern Physics C, 23, Article ID: 1250038, 15p. http://dx.doi.org/10.1142/S0129183112500386
|
[3]
|
Pintr, P., Perinová, V. and Lukc, A. (2008) Allowed Planetary Orbits in the Solar System. Chaos, Solitons and Fractals, 36, 1273-1282. http://dx.doi.org/10.1016/j.chaos.2006.07.056
|
[4]
|
Hermann, R., Schumacher, G. and Guyard, R. (1998) Scale Relativity and Quantization of the Solar System. Astronomy and Astrophysics, 335, 281-286.
|
[5]
|
Giné, J. (2007) On the Origin of the Gravitational Quantization: The Titius-Bode Law. Chaos, Solitons and Fractals, 32, 363-369. http://dx.doi.org/10.1016/j.chaos.2006.06.066
|
[6]
|
Agnese, A.G. and Festa, R. (1997) Clues to Discretization on the Cosmic Scale. Physics Letters A, 227, 165-171.
http://dx.doi.org/10.1016/S0375-9601(97)00007-8
|
[7]
|
Rubcic, A. and Rubcic, J. (1998) The Quantization of the Solar-Like Gravitational Systems. FIZIKA B, 7, 1-13.
|
[8]
|
de Oliveira Neto, M., Maia, L.A. and Carneiro, S. (2004) An Alternative Theoretical Approach to Describe Planetary Systems through a Schr?dinger-Type Diffusion Equation. Chaos, Solitons and Fractals, 21, 21-28.
http://dx.doi.org/10.1016/j.chaos.2003.09.046
|
[9]
|
Geroyannis, V.S. and Karageorgopoulos, V.G. (2014) Computing Rotating Polytropic Models in the Post-Newtonian Approximation: The Problem Revisited. New Astronomy, 28, 9-16. http://dx.doi.org/10.1016/j.newast.2013.09.004
|
[10]
|
Chandrasekhar, S. (1939) Stellar Structure. Dover, New York.
|
[11]
|
Churchill, R.V. (1960) Complex Variables and Applications. McGraw-Hill, New York.
|
[12]
|
Geroyannis, V.S. (1993) A Global Polytropic Model for the Solar System: Planetary Distances and Masses Resulting from the Complex Lane-Emden Differential Equation. Earth, Moon, and Planets, 61, 131-139.
http://dx.doi.org/10.1007/BF00572408
|
[13]
|
Geroyannis, V.S. and Valvi, F.N. (1994) Application of a Global Polytropic Model to the Jupiter’s System of Satellites: A Numerical Treatment. Earth, Moon and Planets, 64, 217-225. http://dx.doi.org/10.1007/BF00572149
|
[14]
|
Gomes, R.S., Matese, J.J. and Lissauer, J.J. (2006) A Distant Planetary-Mass Solar Companion May Have Produced Distant Detached Objects. Icarus, 184, 589-601. http://dx.doi.org/10.1016/j.icarus.2006.05.026
|
[15]
|
Geroyannis, V.S. and Dallas, T.G. (1994) Comments on a Global Polytropic Model for the Solar and Jovian Systems. Earth, Moon and Planets, 65, 15-19. http://dx.doi.org/10.1007/BF00572196
|
[16]
|
Horedt, G.P. (2004) Polytropes: Applications in Astrophysics and Related Fields. Kluwer Academic Publishers, New York.
|
[17]
|
Geroyannis, V.S. and Valvi, F.N. (1993) The Inverse Planetary Problem: A Numerical Treatment. Earth, Moon and Planets, 63, 15-21. http://dx.doi.org/10.1007/BF00572135
|