Pulsed Supermagnetron Plasma CVD of a-CNx:H Electron-Transport Films for Au/a-CNx:H/p-Si Photovoltaic Cells

DOI: 10.4236/jmp.2011.25049   PDF   HTML     6,485 Downloads   10,804 Views   Citations


Hydrogenated amorphous carbon nitride (a-CNx:H) films were formed on p-Si wafers set on a lower elec-trode by pulsed supermagnetron plasma CVD using i-C4H10 and N2 gases. Lower electrode RF power (LORF) of 13.56 MHz (50 - 800 W) was modulated by a 2.5-kHz pulse at a duty ratio of 12.5%, and upper electrode RF power (UPRF) of 50 - 400 W was supplied continuously. The optical band gap decreased with an increase in LORF at each UPRF. The open circuit voltage of Au/a-CNx:H/p-Si photovoltaic cells (a-CNx:H film thickness: 25 nm) was about 200 mV for each cell, and the short circuit current density and energy conversion efficiency increased with LORF for each UPRF. The highest energy conversion efficiency of 0.81% was obtained at UPRF/LORF of 200/800 W.

Share and Cite:

H. Kinoshita and H. Suzuki, "Pulsed Supermagnetron Plasma CVD of a-CNx:H Electron-Transport Films for Au/a-CNx:H/p-Si Photovoltaic Cells," Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 398-403. doi: 10.4236/jmp.2011.25049.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Z. Q. Ma and B. X. Liu, “Boron-Doped Diamond-Like Amorphous Carbon as Photovoltaic Films in Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 69, No. 4, 2001, pp. 339-344. doi:10.1016/S0927-0248(00)00400-1
[2] L. Valentini, L. Lozzi, V. Salerni, I. Armentano, J. M. Kenny and S. Santucci, “Effect of Thermal Annealing on the Electronic Properties of Nitrogen Doped Amorphous Carbon/p-type Crystalline Silicon Heterojunction Diodes,” Journal of Vacuum Science and Technology A, Vol. 21, No. 3, 2003, pp. 582-588. doi:10.1116/1.1562477
[3] M. Umeno and S. Adhikary, “Diamond-Like Carbon Thin Films by Microwave Surface-Wave Plasma CVD Aimed for the Application of Photovoltaic Solar Cells,” Diamond Related Materials, Vol. 14, No. 11-12, 2005, pp. 1973-1979. doi:10.1016/j.diamond.2005.09.030
[4] H. Kinoshita, M. Kiyama and H. Suzuki, “Supermagnetron Plasma CVD of Highly Effective a-CNx:H Electron-Transport and Hole-Blocking Films Suited to Au/a-CNx:H/p-Si Photovoltaic Cells,” Thin Solid Films, Vol. 517, Issue 14, 2009, pp. 4218-4221. doi:10.1016/j.tsf.2009.02.006
[5] H. C. Tsai and D. B. Bogy, “Characterization of Diamondlike Carbon Films and their Application as Overcoats on Thin-Film Media for Magnetic Recording,” Journal of Vacuum Science and Technology A, Vol. 5, No. 6, 1987, pp. 3287-3312. doi:10.1116/1.574188
[6] C. W. Ong, X.-A. Zhao, J. T. Cheung, S. K. Lam, Y. Liu, C. L. Choy and P. W. Chan, “Thermal Stability of Pulsed Laser Deposited Diamond-Like Carbon Films,” Thin Solid Films, Vol. 258, No. 1-2, 1995, pp. 34-39. doi:10.1016/0040-6090(94)06386-9
[7] A. Ilie, A. C. Ferrari, T. Yagi, S.E. Rodil, J. Robertson, E. Barborini and P. Milani, “Role of sp2 Phase in Field Emission from Nanostructured Carbons,” Journal of Applied Physics, Vol. 90, No. 4, 2001, pp. 2024-2032. doi:10.1063/1.1381001
[8] M. Füle, J. Budai, S. Tóth, M. Veres and M. Koós, “Size of Spatial Confinement at Luminescence Centers Determined from Resonant Excitation Bands of a-C:H Photoluminescence,” Journal of Non-Crystalline Solids, Vol. 352, No. 9-20, 2006, pp. 1340-1343. doi:10.1016/j.jnoncrysol.2005.11.087
[9] H. Kinoshita, R. Ikuta and T. Yamaguchi, “Sputter-Assisted Plasma CVD of Wide or Narrow Optical Bandgap Amorphous CNx:H films Using i-C4H10/N2 Supermagnetron Plasma,” Thin Solid Films, Vol. 516, No. 13, 2008, pp. 4441-4445. doi:10.1016/j.tsf.2007.10.017
[10] H. Yamada, O. Tsuji and P. Wood, “Stress Reduction for Hard Amorphous Hydrogenated Carbon Thin Films Deposited by the Self-Bias Method,” Thin Solid Films, Vol. 270, No. 1-2, 1995, pp. 220-225. doi:10.1016/0040-6090(95)06892-9
[11] H. Kinoshita and T. Murakami, “Intermittent Chemical Vapor Deposition of Thick Electrically Conductive Diamond-Like Amorphous Carbon Films Using i-C4H10/N2 Supermagnetron Plasma,” Journal of Vacuum Science and Technology A, Vol. 20, No. 2, 2002, pp. 403-407. doi:10.1116/1.1446446
[12] H. Kinoshita and A. Yamaguchi, “Pulsed Supermagnetron Plasma Chemical Vapor Deposition of Hydrogenated Amorphous Carbon Nitride Films,” Japanese Journal of Applied Physics, Vol. 49, No. 8, 2010, p. 08JF07. doi:10.1143/JJAP.49.08JF07
[13] J. Tauc, R. Grigorovici and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Physica Status Solidi (b), Vol. 15, No. 2, 1966, pp. 627-637. doi:10.1002/pssb.19660150224
[14] C. Godet, T. Heitz, J. E. Bourée, B. Drévillon and C. Clerc, “Growth and Composition of Dual-Plasma Polymer-Like Amorphous Carbon Films,” Journal of Applied Physics, Vol. 84, No. 7, 1998, pp. 3919-3932. doi:10.1063/1.368570
[15] N. Mutsukura, “Photoluminescence and Infra-Red Absorption of Annealed a-CNx:H Films,” Diamond Related Materials, Vol. 10, No. 3-7, 2001, pp. 1152-1155. doi:10.1016/S0925-9635(00)00595-1
[16] H. Kinoshita, M. Kubota and G. Ohno, “Deposition of Amorphous Carbon Nitride Films Using Ar/N2 Supermagnetron Sputter,” Thin Solid Films, Vol. 518, No. 13, 2010, pp. 3502-3505. doi:10.1016/j.tsf.2009.11.051
[17] D. I. Jones and A. D. Stewart, “Properties of Hydrogenated Amorphous Carbon Films and the Effects of Doping,” Philosophical Magazine B, Vol. 46, No. 5, 1982, pp. 423-434. doi:10.1080/01418638208224021
[18] H. Kinoshita and N. Otaka, “Physical Properties of Nitrogen-Doped Diamond-Like Amorphous Carbon Films Deposited by Supermagnetron Plasma CVD,” Journal of Vacuum Science and Technology A, Vol. 20, No. 4, 2002, pp. 1481-1485. doi:10.1116/1.1488946

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.