[1]
|
Raghu, G., Collard, H.R., Egan, J.J., et al. (2011) ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-Based Guidelines for Diagnosis and Management. American Journal of Respiratory and Critical Care Medicine, 183, 788-824.
http://dx.doi.org/10.1164/rccm.2009-040GL
|
[2]
|
Selman, M., King, T.E. and Pardo, A. (2001) American Thoracic Society, European Respiratory Society, American College of Chest Physicians. Idiopathic Pulmonary Fibrosis: Prevailing and Evolving Hypotheses about Its Pathogenesis and Implications for Therapy. Annals of Internal Medicine, 134, 136-151.
http://dx.doi.org/10.7326/0003-4819-134-2-200101160-00015.
|
[3]
|
Strieter, R.M. (2005) Pathogenesis and Natural History of Usual Interstitial Pneumonia: The Whole Story or the Last Chapter of a Long Novel. Chest, 128, 526S-532S. http://dx.doi.org/10.1378/chest.128.5_suppl_1.526S
|
[4]
|
Mason, R.J. (2006) Biology of Alveolar Type II Cells. Respirology, Suppl. 11, S12-S15.
http://dx.doi.org/10.1111/j.1440-1843.2006.00800.x
|
[5]
|
Zahm, J.M., Chevillard, M. and Puchelle, E. (1991) Wound Repair of Human Surface Respiratory Epithelium. American Journal of Respiratory Cell and Molecular Biology, 5, 242-248. http://dx.doi.org/10.1165/ajrcmb/5.3.242
|
[6]
|
Puchelle, E., Zahm, J.M., Tournier, J.M., et al. (2006) Airway Epithelial Repair, Regeneration, and Remodeling after Injury in Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 3, 726-733.
http://dx.doi.org/10.1513/pats.200605-126SF
|
[7]
|
Crosby, L.M. and Waters, C.M. (2010) Epithelial Repair Mechanisms in the Lung. AJP—Lung Cellular and Molecular Physiology, 298, L715-L731.
|
[8]
|
Corrin, B., Dewar, A., Rodriguez-Roisin, R., et al. (1985) Fine Structural Changes in Cryptogenic Fibrosing Alveolitis and Asbestosis. The Journal of Pathology, 147, 107-119. http://dx.doi.org/10.1002/path.1711470206
|
[9]
|
Uhal, B.D., Joshi, I., Hughes, W.F., et al. (1998) Alveolar Epithelial Cell Death Adjacent to Underlying Myofibroblasts in Advanced Fibrotic Human Lung. American Journal of Physiology—Lung Cellular and Molecular Physiology, 275, L1192-L1199.
|
[10]
|
Kuwano, K., Miyazaki, H., Hagimoto, N., et al. (1999) The Involvement of Fas-Fas Ligand Pathway in Fibrosing Lung Diseases. American Journal of Respiratory Cell and Molecular Biology, 20, 53-60.
http://dx.doi.org/10.1165/ajrcmb.20.1.2941
|
[11]
|
Barbas-Filho, J.V., Ferreira, M.A., Sesso, A., et al. (2001) Evidence of Type II Pneumocyte Apoptosis in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IFP)/Usual Interstitial Pneumonia (UIP). Journal of Clinical Pathology, 54, 132-138. http://dx.doi.org/10.1136/jcp.54.2.132
|
[12]
|
Akram, K.M., Samad, S., Spiteri, M., et al. (2013) Mesenchymal Stem Cell Therapy and Lung Diseases. Advances in Biochemical Engineering/Biotechnology, 130, 105-29. http://dx.doi.org/10.1007/10_2012_140
|
[13]
|
Akram, K.M., Lomas, N.J., Spiteri, M.A., et al. (2013) Club Cells Inhibit Alveolar Epithelial Wound Repair via TRAILDependent Apoptosis. European Respiratory Journal, 41, 683-694.
http://dx.doi.org/10.1183/09031936.00213411
|
[14]
|
Selman, M. and Pardo, A. (2002) Idiopathic Pulmonary Fibrosis: An Epithelial/Fibroblastic Cross-Talk Disorder. Respiratory Research, 3, 3. http://dx.doi.org/10.1186/rr175
|
[15]
|
Odajima, N., Betsuyaku, T., Nasuhara, Y., et al. (2007) Loss of Caveolin-1 in Bronchiolization in Lung Fibrosis. Journal of Histochemistry & Cytochemistry, 55, 899-909. http://dx.doi.org/10.1369/jhc.7A7203.2007
|
[16]
|
Chilosi, M., Poletti, V., Murer, B., Lestani, M., Cancellieri, A., Montagna, L., et al. (2002) Abnormal Re-Epithelialization and Lung Remodeling in Idiopathic Pulmonary Fibrosis: The Role of ?N-p63. Laboratory Investigation, 82, 1335-1345. http://dx.doi.org/10.1097/01.LAB.0000032380.82232.67
|
[17]
|
Cisneros, J., Hagood, J., Checa, M., Ortiz-Quintero, B., Negreros, M., Herrera, I., et al. (2012) Hypermethylation-Mediated Silencing of p14ARF in Fibroblasts from Idiopathic Pulmonary Fibrosis. AJP, Lung Cellular and Molecular Physiology, 303, L295-L303.
|
[18]
|
Hogaboam, C.M., Murray, L. and Martinez, F.J. (2012) Epigenetic Mechanisms through Which Toll-Like Receptor-9 Drives Idiopathic Pulmonary Fibrosis Progression. Proceedings of the American Thoracic Society, 9, 172-176.
http://dx.doi.org/10.1513/pats.201201-002AW
|
[19]
|
Rabinovich, E.I., Kapetanaki, M.G., Steinfeld, I., Gibson, K.F., Pandit, K.V., Yu, G., et al. (2012) Global Methylation Patterns in Idiopathic Pulmonary Fibrosis. PLoS ONE, 7, Article ID: e33770.
http://dx.doi.org/10.1371/journal.pone.0033770
|
[20]
|
Weiss, D.J. and Finck, C. (2010) Embryonic Stem Cells and Repair of Lung Injury. Molecular Therapy, 18, 460-461.
http://dx.doi.org/10.1038/mt.2010.8
|
[21]
|
Evans, M.J. and Kaufman, M.H. (1981) Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature, 292, 154-156. http://dx.doi.org/10.1038/292154a0
|
[22]
|
Kaufman, M.H., Robertson, E.J., Handyside, A.H. and Evans, M.J. (1983) Establishment of Pluripotential Cell Lines from Haploid Mouse Embryos. Journal of Embryology & Experimental Morphology, 73, 249-261.
|
[23]
|
Martin, G.R. (1981) Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634-7638. http://dx.doi.org/10.1073/pnas.78.12.7634
|
[24]
|
Mummery, C., Ward, D., van den Brink, C.E., Bird, S.D., Doevendans, P.A., Opthof, T., et al. (2002) Cardiomyocyte Differentiation of Mouse and Human Embryonic Stem Cells. Journal of Anatomy, 200, 233-242.
http://dx.doi.org/10.1046/j.1469-7580.2002.00031.x
|
[25]
|
Mummery, C., Oostwaard, D.W., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., et al. (2003) Differentiation of Human Embryonic Stem Cells to Cardiomyocytes: Role of Coculture with Visceral Endoderm-Like Cells. Circulation, 107, 2733-2740. http://dx.doi.org/10.1161/01.CIR.0000068356.38592.68
|
[26]
|
Ying, Q., Stavridis, M., Griffiths, D., Li, M. and Smith, A. (2003) Conversion of Embryonic Stem Cells into Neuroectodermal Precursors in Adherent Monoculture. Nature Biotechnology, 21, 183-186. http://dx.doi.org/10.1038/nbt780
|
[27]
|
Shin, S., Dalton, S. and Stice, S.L. (2005) Human Motor Neuron Differentiation from Human Embryonic Stem Cells. Stem Cells and Development, 14, 266-269. http://dx.doi.org/10.1089/scd.2005.14.266
|
[28]
|
Abranches, E., Silva, M., Pradier, L., Schulz, H., Hummel, O., Henrique, D., et al. (2009) Neural Differentiation of Embryonic Stem Cells in Vitro: A Road Map to Neurogenesis in the Embryo. PLoS ONE, 4, Article ID: e6286.
http://dx.doi.org/10.1371/journal.pone.0006286
|
[29]
|
D’Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E. and Baetge, E.E. (2005) Efficient Differentiation of Human Embryonic Stem Cells to Definitive Endoderm. Nature Biotechnology, 23, 1534-1541.
http://dx.doi.org/10.1038/nbt1163
|
[30]
|
Kubo, A., Shinozaki, K., Shannon, J.M., Kouskoff, V., Kennedy, M., Woo, S., et al. (2004) Development of Definitive Endoderm from Embryonic Stem Cells in Culture. Development, 131, 1651-1662. http://dx.doi.org/10.1242/dev.01044
|
[31]
|
McLean, A.B., D’Amour, K.A., Jones, K.L., Krishnamoorthy, M., Kulik, M.J., Reynolds, D.M., et al. (2007) Activin A Efficiently Specifies Definitive Endoderm from Human Embryonic Stem Cells Only When Phosphatidylinositol 3-Kinase Signaling Is Suppressed. Stem Cells, 25, 29-38. http://dx.doi.org/10.1634/stemcells.2006-0219
|
[32]
|
Colman, A. (2004) Making New Beta Cells from Stem Cells. Seminars in Cell & Developmental Biology, 15, 337-345.
http://dx.doi.org/10.1016/j.semcdb.2004.02.003
|
[33]
|
Stoffel, M., Vallier, L. and Pedersen, R.A. (2004) Navigating the Pathway from Embryonic Stem Cells to Beta Cells. Seminars in Cell & Developmental Biology, 15, 327-336. http://dx.doi.org/10.1016/j.semcdb.2004.02.002
|
[34]
|
Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I., et al. (2001) Hepatic Maturation in Differentiating Embryonic Stem Cells in Vitro. FEBS Letters, 497, 15-19. http://dx.doi.org/10.1016/S0014-5793(01)02423-1
|
[35]
|
Jones, E.A., Tosh, D., Wilson, D.I., Lindsaya, S. and Forrester, L.M. (2002) Hepatic Differentiation of Murine Embryonic Stem Cells. Experimental Cell Research, 272, 15-22. http://dx.doi.org/10.1006/excr.2001.5396
|
[36]
|
Yamada, T., Yoshikawa, M., Kanda, S., Kato, Y., Nakajima, Y., Ishizaka, S., et al. (2002) In Vitro Differentiation of Embryonic Stem Cells into Hepatocyte-Like Cells Identified by Cellular Uptake of Indocyanine Green. Stem Cells, 20, 146-154. http://dx.doi.org/10.1634/stemcells.20-2-146
|
[37]
|
Yamada, T., Yoshikawa, M., Takaki, M., Torihashi, S., Kato, Y., Nakajima, Y., et al. (2002) In Vitro Functional GutLike Organ Formation from Mouse Embryonic Stem Cells. Stem Cells, 20, 41-49.
http://dx.doi.org/10.1634/stemcells.20-1-41
|
[38]
|
Ali, N.N., Edgar, A.J., Samadikuchaksaraei, A., Timson, C.M., Romanska, H.M., Polak, J.M., et al. (2002) Derivation of Type II Alveolar Epithelial Cells from Murine Embryonic Stem Cells. Tissue Engineering, 8, 541-550.
http://dx.doi.org/10.1089/107632702760240463
|
[39]
|
Rippon, H.J., Polak, J.M., Qin, M. and Bishop, A.E. (2006) Derivation of Distal Lung Epithelial Progenitors from Murine Embryonic Stem Cells Using a Novel Three-Step Differentiation Protocol. Stem Cells, 24, 1389-1398.
http://dx.doi.org/10.1634/stemcells.2005-0465
|
[40]
|
Wang, D., Morales, J.E., Calame, D.G., Alcorn, J.L. and Wetsel, R.A. (2010) Transplantation of Human Embryonic Stem Cell-Derived Alveolar Epithelial Type II Cells Abrogates Acute Lung Injury in Mice. Molecular Therapy, 18, 625-634. http://dx.doi.org/10.1038/mt.2009.317
|
[41]
|
Roszell, B., Mondrinos, M.J., Seaton, A., Simons, D.M., Koutzaki, S.H., Fong, G.H., et al. (2009) Efficient Derivation of Alveolar Type II Cells from Embryonic Stem Cells for in Vivo Application. Tissue Engineering Part A, 15, 3351-3365. http://dx.doi.org/10.1089/ten.tea.2008.0664
|
[42]
|
Geiser, T., Jarreau, P.H., Atabai, K. and Matthay, M.A. (2000) Interleukin-1beta Augments in Vitro Alveolar Epithelial Repair. AJP, Lung Cellular and Molecular Physiology, 279, L1184-L1190.
|
[43]
|
Atabai, K., Ishigaki, M., Geiser, T., Ueki, I., Matthay, M.A. and Ware, L.B. (2002) Keratinocyte Growth Factor Can Enhance Alveolar Epithelial Repair by Nonmitogenic Mechanisms. AJP, Lung Cellular and Molecular Physiology, 283, L163-L169.
|
[44]
|
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al. (1998) Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 282, 1145-1147.
http://dx.doi.org/10.1126/science.282.5391.1145
|
[45]
|
Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. and Bongso, A. (2000) Embryonic Stem Cell Lines from Human Blastocysts: Somatic Differentiation in Vitro. Nature Biotechnology, 18, 399-404. http://dx.doi.org/10.1038/74447
|
[46]
|
Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., et al. (2003) Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell, 113, 643-655.
http://dx.doi.org/10.1016/S0092-8674(03)00392-1
|
[47]
|
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003) The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell, 113, 631-642.
http://dx.doi.org/10.1016/S0092-8674(03)00393-3
|
[48]
|
Abe, K., Niwa, H., Iwase, K., Takiguchi, M., Mori, M., Abé, S.I., et al. (1996) Endoderm-Specific Gene Expression in Embryonic Stem Cells Differentiated to Embryoid Bodies. Experimental Cell Research, 229, 27-34.
http://dx.doi.org/10.1006/excr.1996.0340
|
[49]
|
Bruce, S.J., Gardiner, B.B., Burke, L.J., Gongora, M.M., Grimmond, S.M. and Perkins, A.C. (2007) Dynamic Transcription Programs during ES Cell Differentiation towards Mesoderm in Serum versus Serum-FreeBMP4 Culture. BMC Genomics, 8, 365. http://dx.doi.org/10.1186/1471-2164-8-365
|
[50]
|
Pevny, L.H., Sockanathan, S., Placzek, M. and Lovell-Badge, R. (1998) A Role for SOX1 in Neural Determination. Development, 125, 1967-1978.
|
[51]
|
Ortiz, L.A., Dutreil, M., Fattman, C., Pandey, A.C., Torres, G., Go, K., et al. (2007) Interleukin 1 Receptor Antagonist Mediates the Antiinflammatory and Antifibrotic Effect of Mesenchymal Stem Cells during Lung Injury. Proceedings of the National Academy of Sciences of the United States of America, 104, 11002-11007.
http://dx.doi.org/10.1073/pnas.0704421104
|
[52]
|
Zhen, G., Liu, H., Gu, N., Zhang, H., Xu, Y. and Zhang, Z. (2008) Mesenchymal Stem Cells Transplantation Protects against Rat Pulmonary Emphysema. Frontiers in Bioscience, 13, 3415-3422. http://dx.doi.org/10.2741/2936
|
[53]
|
Burdon, T.J., Paul, A., Noiseux, N., Prakash, S. and Shum-Tim, D. (2011) Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential. Bone Marrow Research, 2011, Article ID: 207326. http://dx.doi.org/10.1155/2011/207326
|
[54]
|
Baber, S.R., Deng, W., Master, R.G., Bunnell, B.A., Taylor, B.K., Murthy, S.N., et al. (2007) Intratracheal Mesenchymal Stem Cell Administration Attenuates Monocrotaline-Induced Pulmonary Hypertension and Endothelial Dysfunction. AJP, Heart and Circulatory Physiology, 292, H1120-H1128.
|
[55]
|
Nemeth, K., Keane-Myers, A., Brown, J.M., Metcalfec, D.D., Gorhamd, J.D., Bundoc, V.G., et al. (2010) Bone Marrow Stromal Cells Use TGF-Beta to Suppress Allergic Responses in a Mouse Model of Ragweed-Induced Asthma. Proceedings of the National Academy of Sciences of the United States of America, 107, 5652-5657.
http://dx.doi.org/10.1073/pnas.0910720107
|
[56]
|
Banerjee, E.R., Laflamme, M.A., Papayannopoulou, T., Kahn, M., Murry, C.E. and Henderson Jr., W.R. (2012) Human Embryonic Stem Cells Differentiated to Lung Lineage-Specific Cells Ameliorate Pulmonary Fibrosis in a Xenograft Transplant Mouse Model. PLoS ONE, 7, Article ID: e33165. http://dx.doi.org/10.1371/journal.pone.0033165
|
[57]
|
Crisostomo, P.R., Abarbanell, A.M., Wang, M., Lahm, T., Wang, Y. and Meldrum, D.R. (2008) Embryonic Stem Cells Attenuate Myocardial Dysfunction and Inflammation after Surgical Global Ischemia via Paracrine Actions. AJP, Heart and Circulatory Physiology, 295, H1726-H1735.
|
[58]
|
LaFramboise, W.A., Petrosko, P., Krill-Burger, J.M., Morris, D.R., McCoya, A.R., Scalise, D., et al. (2010) Proteins Secreted by Embryonic Stem Cells Activate Cardiomyocytes through Ligand Binding Pathways. Journal of Proteomics, 73, 992-1003. http://dx.doi.org/10.1016/j.jprot.2009.12.013
|
[59]
|
Singla, D.K. and McDonald, D.E. (2007) Factors Released from Embryonic Stem Cells Inhibit Apoptosis of H9c2 Cells. AJP, Heart and Circulatory Physiology, 293, H1590-H1595.
|
[60]
|
Singla, D.K., Singla, R.D. and McDonald, D.E. (2008) Factors Released from Embryonic Stem Cells Inhibit Apoptosis in H9c2 Cells through PI3K/Akt but Not ERK Pathway. AJP, Heart and Circulatory Physiology, 295, H907-H913.
|
[61]
|
Lu, X., Chen, D., Liu, Z., Li, C., Liu, Y., Zhou, J., et al. (2010) Enhanced Survival in Vitro of Human Corneal Endothelial Cells Using Mouse Embryonic Stem Cell Conditioned Medium. Molecular Vision, 16, 611-622.
|
[62]
|
Sisson, T.H., Mendez, M., Choi, K., Subbotina, N., Courey, A., Cunningham, A., et al. (2010) Targeted Injury of Type II Alveolar Epithelial Cells Induces Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 181, 254-263. http://dx.doi.org/10.1164/rccm.200810-1615OC
|
[63]
|
Buckley, S., Shi, W., Carraro, G., Sedrakyan, S., Sacco, S.D., Driscoll, B.A., et al. (2011) The Milieu of Damaged Alveolar Epithelial Type 2 Cells Stimulates Alveolar Wound Repair by Endogenous and Exogenous Progenitors. American Journal of Respiratory Cell and Molecular Biology, 45, 1212-1221. http://dx.doi.org/10.1165/rcmb.2010-0325OC
|
[64]
|
Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., et al. (2001) Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells. Nature Biotechnology, 19, 971-974. http://dx.doi.org/10.1038/nbt1001-971
|
[65]
|
Plumb, J.A., Milroy, R. and Kaye, S.B. (1989) Effects of the pH Dependence of 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-Tetrazolium Bromide-Formazan Absorption on Chemosensitivity Determined by a Novel Tetrazolium-Based Assay. Cancer Research, 49, 4435-4440.
|