Share This Article:

The Contribution of EEG to the Diagnosis of Dementia

Abstract Full-Text HTML Download Download as PDF (Size:1365KB) PP. 546-562
DOI: 10.4236/jbise.2014.78056    2,990 Downloads   4,432 Views   Citations

ABSTRACT

Changes induced by cerebrovascular damage (CVD) and amigdalo-hippocampal atrophy (AHC) on brain rhythmicity as revealed by scalp electroencephalography (EEG) were evaluated in a cohort of subjects with mild cognitive impairment (MCI) in order to detect different EEG patterns due to the vascular or degenerative impairment. All subjects underwent EEG recording and magnetic resonance imaging (MRI). EEGs were recorded at rest. Relative power was separately computed for delta, theta, alpha1, alpha2, and alpha 3 frequency bands. Increased delta power and decreased alpha2 power were associated with the load of cerebrovascular damage (CVD). Moreover, the theta/alpha 1 ratio could be a reliable index for the estimation of the individual extent of CV damage. No association of vascular damage was observed with alpha3 power. On the other side, moderate hippocampal atrophy was related to an increase of alpha2 and alpha3 frequency power ratio. Our results show that different EEG markers are associated to vascular dementia and Alzheimer’s disease (AD). EEG markers could be expression of different global network pathological changes, helping in differentiation of prodromal AD from vascular demented patients. MCI stated that EEG markers could have a prospective value in differential diagnosis between vascular and degenerative MCI.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Moretti, D. (2014) The Contribution of EEG to the Diagnosis of Dementia. Journal of Biomedical Science and Engineering, 7, 546-562. doi: 10.4236/jbise.2014.78056.

References

[1] Flicker, C.S., Ferris, H. and Reisberg, B. (1991) Mild Cognitive Impairment in the Elderly: Predictors of Dementia. Neurology, 41, 1006-1009.
[2] Petersen, R.C., Smith, G.E., Ivnik, R.J., Tangalos, E.G., Schaid, S.N., Thibodeau, S.N., Kokmen, E., Waring, S.C. and Kurland, L.T. (1995) Apolipoprotein E Status as a Predictor of the Development of Alzheimer’s Disease in Memoryimpaired Individuals. Journal of the American Medical Informatics Association, 273, 1274-1278.
http://dx.doi.org/10.1001/jama.1995.03520400044042
[3] Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Kokmen, E. and Tangelos, E.G. (1997) Aging, Memory, and Mild Cognitive Impairment. International Psychogeriatrics, 9, 65-69.
[4] Arnold, S.E., Hyman, B.T., Flory, J., Damasco, A.R. and Van Hoesen, G.W. (1991) The Topographical and Neuroanatomical Distribution of Neurofibrillary Tangles and Neuritic Plaques in the Cerebral Cortex of Patients with Alzheimer’s Disease. Cerebral Cortex, 1, 103-116.
http://dx.doi.org/10.1093/cercor/1.1.103
[5] Bobinski, M., Wegiel, J., Wisniewski, H.M., Tarnawski, M., Reisberg, B., Mlozidc, B., et al. (1995) Atrophy of Hippocampal Formation Subdivisions Correlates with Stage and Duration of Alzheimer’s Disease. Dementia, 6, 205-210.
[6] Price, J.L. and Morris, J.C. (1999) Tangles and Plaques in Nondemented Aging and Preclinical Alzheimer’s Disease. Annals of Neurology, 45, 358-368.
http://dx.doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
[7] Schonheit, B., Zarski, R. and Ohm, T.G. (2004) Spatial and Temporal Relationships between Plaques and Tangles in Alzheimer Pathology. Neurobiology of Aging, 25, 697-711.
http://dx.doi.org/10.1016/j.neurobiolaging.2003.09.009
[8] Bennett, D.A., Schneider, J.A., Bienais, J.L., Evans, D.A. and Wilson, R.S. (2004) Mild Cognitive Impairment Is Related to Alzheimer Disease Pathology and Cerebral Infarctions. Neurology, 23, 325-335.
[9] Frisoni, G.B., Prestia, A., Rasser, P.E., Bonetti, M. and Thompson, P.M. (2009) In Vivo Mapping of Incremental Cortical Atrophy from Incipient to overt Alzheimer’s Disease. Journal of Neurology, 256, 916-924.
http://dx.doi.org/10.1007/s00415-009-5040-7
[10] Callen, D.J., Black, S.E., Gao, F., Caldwell, C.B. and Szalai, J.P. (2001) Beyond the Hippocampus: MRI Volumetry Confirms Widespread Limbic Atrophy in AD. Neurology, 57, 1669-1674.
http://dx.doi.org/10.1212/WNL.57.9.1669
[11] Du, A.T., Schuff, N., Amend, D., Laasko, M.P., Hsu, Y.Y., Jagust, W.J., et al. (2001) Magnetic Resonance Imaging of the Enthorinal Cortex and Hippocampus in Mild Cognitive Impairment and Alzheimer’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 71, 441-447.
http://dx.doi.org/10.1212/WNL.57.9.1669
[12] Gold, G., Bouras, C., Kovari, E., Canito, A., Glaria, B.G., Malky, A., et al. (2000) Clinical Validità of Braak Neuropathological Staging in the Oldest-Old. Acta Neuropathologica, 99, 579-582.
http://dx.doi.org/10.1007/s004010051163
[13] Della Maggiore, V., Chau, W., Peres-Neto, P.R. and McIntosh, A.R. (2002) An Empirical Comparison of SPM Pre-processing Parameters to the Analysis of fMRI Data. Neuroimage, 17, 19-28.
http://dx.doi.org/10.1007/s004010051163
[14] Hamalainen, A., Pihlaimaki, M., Tanila, H., Hanninen, T., Niskanen, E., Tervo, S., Karjalainen, P.A., Vanninen, R.L. and Soininen, H. (2006) Increased fMRI Responses during Encoding in Mild Cognitive Impairment. Neurobiology of Aging, 28, 1889-1903.
http://dx.doi.org/10.1016/j.neurobiolaging.2006.08.008
[15] Lavenex, P. and Amaral, D.G. (2000) Hippocampal-Neocortical Interaction: A Hierarchy of Associativity. Hippocampus, 10, 420-430.
http://dx.doi.org/10.1016/j.neurobiolaging.2006.08.008
[16] Dickerson, B.C., Salat, D.H., Bates, J.F., Atiya, M., Kiliiany, R.J., Greve, D.N., et al. (2004) Medial Temporal Lobe Function and Structure in Midl Cognitive Impairment. Annals of Neurology, 56, 27-35.
http://dx.doi.org/10.1002/ana.20163
[17] Dickerson, B.C., Salat, D.H., Greve, D.N., Chua, E.F., Rand-Giovannetti, E., Rentz, D.M., et al. (2005) Increased Hippomcapal Activation in Mild Cognitive Impairment Compared to Normal Aging and AD. Neurology, 65, 404-411.
http://dx.doi.org/10.1212/01.wnl.0000171450.97464.49
[18] Pariente, J., Cole, S., Henson, R., Clare, L., Kennedy, A., Rossor, M., et al. (2005) Alzheimer’s Patients Engage an Alternative Network during a Memory Task. Annals of Neurology, 59, 870-879.
http://dx.doi.org/10.1002/ana.20653
[19] Machulda, M.M., Ward, H.A., Borowski, B., Gunter, J.L., Cha, R.H., O’Brien, P.C., et al. (2003) Comparison of Memory fMRI Response among Normal, MCI, and Alzheimer’s Patients. Neurology, 61, 500-506.
http://dx.doi.org/10.1212/01.WNL.0000079052.01016.78
[20] Jelic, V., Johansson, S.E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., Winblad, B. and Wahlund, L.O. (2000) Quantitative Electroencephalography in Mild Cognitive Impairment: Longitudinal Changes and Possible Prediction of Alzheimer’s Disease. Neurobiology of Aging, 21, 533-540.
http://dx.doi.org/10.1016/S0197-4580(00)00153-6
[21] Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B. and Wahlund, L.O. (1997) Apolipoprotein Eε4 Allele Decreases Functional Connectivity in Alzheimer’s Disease as Measured by EEG Coherence. Journal of Neurology, Neurosurgery, and Psychiatry, 63, 59-65.
http://dx.doi.org/10.1136/jnnp.63.1.59
[22] Ferreri, F., Pauri, F., Pasqualetti, P., Fini, R., Forno, G.D. and Rossini, P.M. (2003) Motor Cortex Excitability in Alzheimer’s Disease: A Transcranial Magnetic Stimulation Study. Annals of Neurology, 53, 102-108.
http://dx.doi.org/10.1002/ana.10416
[23] Pijnenburg, Y.A.L., Made, Y., Knol, D.L., van Cappellen van Walsum, A.M., Knol, D.L., Scheltens, P. and Stam, C.J. (2004) EEG Synchronization Likelihood in Mild Cognitive Impairment and Alzheimer’s Disease during a Working Memory Task. Clinical Neurophysiology, 115, 1332-1339.
http://dx.doi.org/10.1016/j.clinph.2003.12.029
[24] Jiang, Z. (2005) Study on EEG Power and Coherence in Patients with Mild Cognitive Impairment during Working Memory Task. Journal of Zhejiang University SCIENCE B, 6, 1213-1219.
http://dx.doi.org/10.1631/jzus.2005.B1213
[25] Jiang, Z. and Zheng, L. (2006) Inter- and Intra-Hemispheric EEG Coherence in Patients with Mild Cognitive Impairment at Rest and during Working Memory Task. Journal of Zhejiang University SCIENCE B, 7, 357-364.
http://dx.doi.org/10.1631/jzus.2006.B0357
[26] Zheng, L., Jiang, Z. and Yu, E. (2007) Alpha Spectral Power and Coherence in the Patients with Mild Cognitive Impairment during a Three-Level Working Memory Task. Journal of Zhejiang University SCIENCE B, 8, 584-592.
http://dx.doi.org/10.1631/jzus.2007.B0584
[27] Zappoli, R., Versari, A., Paganini, M., Arnetoli, G., Muscas, G.C., Gangemi, P.F., Arneodo, M.G., Poggiolini, D., Zappoli, F. and Battaglia, A. (1995) Brain Electrical Activity (Quantitative EEG and Bit-Mapping Neurocognitive CNV Components), Psychometrics and Clinical Findings in Presenile Subjects with Initial Mild Cognitive Decline or Probable Alzheimer-Type Dementia. The Italian Journal of Neurological Sciences, 16, 341-376.
http://dx.doi.org/10.1007/BF02229172
[28] Huang, C., Wahlund, L.O., Dierks, T., Julin, P., Winblad, B. and Jelic, V. (2000) Discrimination of Alzheimer’s Disease and Mild Cognitive Impairment by Equivalent EEG Sources: A Cross-Sectional and Longitudinal Study. Clinical Neurophysiology, 111, 1961-1967.
http://dx.doi.org/10.1016/S1388-2457(00)00454-5
[29] Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R. and Jelic, V. (2005) Decreased EEG Synchronization in Alzheimer’s Disease and Mild Cognitive Impairment. Neurobiology of Aging, 26, 165-171.
http://dx.doi.org/10.1016/j.neurobiolaging.2004.03.008
[30] Babiloni, C., Binetti, G., Cassetta, E., Forno, G.D., Percio, C.D., Ferreri, F., Ferri, R., Frisoni, G., Hirata, K., Lanuzza, B., Miniussi, C., Moretti, D.V., Nobili, F., Rodriguez, G., Romani, G.L., Salinari, S. and Rossini, P.M. (2006) Sources of Cortical Rhythms Change as a Function of Cognitive Impairment in Pathological Aging: A Multicentric Study. Clinical Neurophysiology, 117, 252-268.
http://dx.doi.org/10.1016/j.clinph.2005.09.019
[31] Golob, E.J., Irimajiri, R. and Starr, A. (2007) Auditory Cortical Activity in Amnestic Mild Cognitive Impairment: Relationship to Subtype and Conversion to Dementia. Brain, 130, 740-752.
http://dx.doi.org/10.1093/brain/awl375
[32] Moretti, D.V., Miniussi, C., Frisoni, G.B., Geroldi, C., Zanetti, O., Binetti, G. and Rossini, P.M. (2007) Hippocampal Atrophy and EEG Markers in Subjects with Mild Cognitive Impairment. Clinical Neurophysiology, 118, 2716-2729.
http://dx.doi.org/10.1016/j.clinph.2007.09.059
[33] Moretti, D.V., Pievani, M., Fracassi, C., Binetti, G., Rosini, S., Geroldi, C., Zanetti, O., Rossini, P.M. and Frisoni, G.B. (2008) Increase of Theta/Gamma and Alpha3/Alpha2 Ratio Is Associated with Amygdalo-Hippocampal Complex Atrophy. Journal of Alzheimer’s Disease, 120, 295-303.
[34] Moretti, D.V., Pievani, M., Fracassi, C., Binetti, G., Rosini, S., Geroldi, C., Zanetti, O., Rossini, P.M. and Frisoni, G.B. (2009) Increase of Theta/Gamma and Alpha3/Alpha2 Ratio Is Associated with Amygdalo-Hippocampal Complex Atrophy. Journal of Alzheimer’s Disease, 17, 349-357.
[35] Kramer, J.H., Reed, B.R., Mungas, D., Weiner, M.W. and Chui, H.C. (2002) Executive Dysfunction in Subcortical Ischaemic Vascular Disease. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 217-220.
http://dx.doi.org/10.1136/jnnp.72.2.217
[36] Moretti, D.V., Pievani, M., Geroldi, C., Binetti, G., Zanetti, O., Cotelli, M., Rossini, P.M. and Frisoni, G.B. (2009) Increasing of Hippocampal Atrophy and Cerebrovascular Damage Is Differently Associated with Functional Cortical Coupling in MCI Patients. Alzheimer Disease & Associated Disorders, 23, 323-332.
http://dx.doi.org/10.1097/WAD.0b013e31819d4a9d
[37] Moretti, D.V., Pievani, M., Geroldi, C., Binetti, G., Zanetti, O., Rossini, P.M. and Frisoni, G.B. (2010) EEG Markers Discriminate among Different Subgroup of Patients with Mild Cognitive Impairment. American Journal of Alzheimer’s Disease and Other Dementias, 25, 58-73.
http://dx.doi.org/10.1177/1533317508329814
[38] Moretti, D.V., Frisoni, G.B., Fracassi, C., Pievani, M., Geroldi, C., Binetti, G., Rossini, P.M. and Zanetti, O. (2011) MCI Patients’ EEGs Show Group Differences between Those Who Progress and Those Who Do Not Progress to AD. Neurobiology of Aging, 32, 563-571.
http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.003
[39] Moretti, D.V., Frisoni, G.B., Binetti, G. and Zanetti, O. (2011) Anatomical Substrate and Scalp EEG Markers Are Correlated in Subjects with Cognitive Impairment and Alzheimer’s Disease. Front Psychiatry, 1, 152.
[40] Klimesch, W. (1999) EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Research Reviews, 29, 169-195.
http://dx.doi.org/10.1016/S0165-0173(98)00056-3
[41] Folstein, M.F., Folstein, S.E. and McHugh, P.R. (1975) “Mini Mental State”: A Practical Method for Grading the Cognitive State of Patients for Clinician. Journal of Psychiatric Research, 12, 189-198.
http://dx.doi.org/10.1016/0022-3956(75)90026-6
[42] Hughes, C.P., Berg, L., Dan-ziger, W.L., Cohen, L.A. and Martin, R.L. (1982) A New Clinical Rating Scale for the Staging of Dementia. The British Journal of Psychiatry, 140, 1225-1230.
http://dx.doi.org/10.1192/bjp.140.6.566
[43] Rosen, W.G., Terry, R.D., Fuld, P.A., Katzman, R. and Peck, A. (1980) Pathological Verification of Ischemic Score in Differentiation of Dementias. Annals of Neurology, 7, 486-488.
http://dx.doi.org/10.1002/ana.410070516
[44] Lawton, M.P. and Brodie, E.M. (1969) Assessment of Older People: Self Maintaining and Instrumental Activity of Daily Living. The Gerontologist, 9, 179-186.
http://dx.doi.org/10.1093/geront/9.3_Part_1.179
[45] Moretti, D.V., Paternicò, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2013) EEG Upper/Low Alpha Frequency Power Ratio Relates to Temporo-Parietal Brain Atrophy and Memory Performances in Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 5, 63.
http://dx.doi.org/10.3389/fnagi.2013.00063
[46] Moretti, D.V., Prestia, A., Binetti, G., Zanetti, O. and Frisoni, G.B. (2013) Increase of Theta Frequency Is Associated with Reduction in Regional Cerebral Blood Flow Only in Subjects with Mild Cognitive Impairment with Higher Upper Alpha/Low Alpha EEG Frequency Power Ratio. Frontiers in Behavioral Neuroscience, 7, Ariticle No. 188.
http://dx.doi.org/10.3389/fnbeh.2013.00188
[47] Moretti, D.V., Prestia, A., Binetti, G., Zanetti, O. and Frisoni, G.B. (2013) Correlation between Regional Cerebral Blood Flow and EEG Upper/Low Alpha Frequency Power Ratio in Mild Cognitive Impairment. Journal of Radiology and Diagnostic Imaging, 1, 49-59.
http://dx.doi.org/10.14205/2309-4427.2013.01.02.4
[48] Moretti, D.V., Paternicò, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2014) Electroencephalographic Upper/Low Alpha Frequency Power Ratio Relates to Cortex Thinning in Mild Cognitive Impairment. Neurodegenerative Diseases, Published Online.
http://dx.doi.org/10.1159/000354863
[49] Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2014) EEG Upper/Low Alpha Frequency Power Ratio and the Impulsive Disorders Network in Subjects with Mild Cognitive Impairment. Current Alzheimer Research, 11, 192-199.
http://dx.doi.org/10.2174/156720501102140313155546
[50] Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2013) Theta/Gamma Frequency Ratio Is Associated to Grey Matter Changes in Basal Ganglia in Subjects with Mild Cognitive Impairment. Journal of Radiology and Diagnostic Imaging, 52, 10-18.
http://dx.doi.org/10.14205/2309-4427.2013.01.01.3
[51] Lezak, M., Howieson, D. and Loring, D.W. (2004) Neuropsychological Assessment. 4th Edition. University Press, Oxford.
[52] Radloff, L.S. (1977) The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Applied Psychological Measurement, 1, 385-401.
http://dx.doi.org/10.1177/014662167700100306
[53] Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2013) Temporo-Parietal Brain Network Impairment Is Related To EEG ALPHA3/ALPHA2 Power Ratio in Prodormal Alzheimer’s Disease. Journal of Neurology & Neurophysiology, 4, 1-9
[54] Moretti, D.V., Paternicò, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2012) Analysis of Grey Matter in Thalamus and Basal Ganglia Based on EEG Alpha3/Alpha2 Frequency Ratio Reveals Specific Changes in Subjects with Mild Cognitive Impairment. ASN Neuro, 4, e00103.
http://dx.doi.org/10.1042/AN20120058
[55] Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2013) Relationship between EEG Alpha3/ Alpha2 Ration and the Nuclues Accumbens in Subjects with Mild Cognitive Impairment. Journal of Neurology & Neurophysiology, 4, 149.
[56] Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O. and Frisoni, G.B. (2012) EEG Markers are Associated to Gray Matter Changes in Thalamus and Basal Ganglia in Subjects with Mild Cognitive Impairment. Neuroimage, 60, 489-496.
http://dx.doi.org/10.1016/j.neuroimage.2011.11.086
[57] Moretti, D.V., Prestia, A., Binetti, G., Zanetti, O. and Frisoni, G.B. (2012) Specific EEG Changes Associated with Atrophy of Hippocampus in Subjects with Mild Cognitive Impairment and Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2012, Article ID 253153.
[58] Moretti, D.V., Zanetti, O., Binetti, G. and Frisoni, G.B. (2012) Quantitative EEG Markers in Mild Cognitive Impairment: Degenerative versus Vascular Brain Impairment. International Journal of Alzheimer’s Disease, 2012, Article ID 917537.
[59] Stam, C.J., van der Made, Y., Pijnenburg, Y.A. and Scheltens, P. (2003) EEG Synchronization in Mild Cognitive Impairment and Alzheimer’s Disease. Acta Neurologica Scandinavica, 108, 90-96.
http://dx.doi.org/10.1034/j.1600-0404.2003.02067.x
[60] Moretti, D.V., Prestia, A., Fracassi, C., Geroldi, C., Binetti, G., Rossini, P.M., Zanetti, O. and Frisoni, G.B. (2011) Volumetric Differences in Mapped Hippocampal Regions Correlate with Increase of High Alpha Rhythm in Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2011, 208-218.
[61] Seidenbecher, T., Laxmi, T.R., Stork, O. and Pape, H.C. (2003) Amygdalar and Hippo-campal Theta Rhythm Synchronization during Fear Memory Retrieval. Science, 301, 846-850.
http://dx.doi.org/10.1126/science.1085818
[62] Narayanan, R.T., Seidenbecher, T., Sangha, S., Stork, O. and Pape, H.C. (2007) Theta Resynchronization during Re-consolidation of Remote Contextual Fear Memory. Neuroreport, 18, 1107-1111.
http://dx.doi.org/10.1097/WNR.0b013e3282004992
[63] Montgomery, S.M. and Buzsáki, G. (2007) Gamma Oscillations Dynamically Couple Hippocampal CA3 and CA1 Regions during Memory Task Performance. Proceedings of the National Academy of Sciences of the United States of America, 104, 14495-14500.
http://dx.doi.org/10.1073/pnas.0701826104
[64] Sauseng, P., Klimesch, W., Doppelmayr, M., Hanslmayr, S., Schabus, M. and Gruber, W.R. (2004) Theta Coupling in the Human Electroencephalogram during a Working Memory Task. Neuroscience Letters, 354, 123-126.
http://dx.doi.org/10.1016/j.neulet.2003.10.002
[65] Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K. and Buzsaki, G. (1995) Gamma (40-100 Hz) Oscillation in the Hippocampus of the Behaving Rat. Journal of Neuroscience, 15, 47-60.
[66] Moretti, D.V, Babiloni, C., Binetti, G., Cassetta, E., Forno, G.D., Ferreric, F., Ferri, R., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Salinari, S. and Rossini, P.M. (2004) Individual Analysis of EEG Frequency and Band Power in Mild Alzheimer’s Disease. Clinical Neurophysiology, 115, 299-208.
http://dx.doi.org/10.1016/S1388-2457(03)00345-6
[67] Llinas, R.R., Ribary, U., Jeanmonod, D., Kronberg, E. and Mitra, P.P. (1999) Thalamocortical Dysrhythmia: A Neurological and Neuropsychiatric Syndrome Characterized by Magnetoencephalography. Proceedings of the National Academy of Sciences of the United States of America, 96, 15222-15227.
http://dx.doi.org/10.1073/pnas.96.26.15222
[68] Klimesch, W., Sauseng, P. and Hanslmayr, S. (2007) EEG Alpha Oscillations: The Inhibition Timing Hypothesis. Brain Research Reviews, 53, 63-88.
http://dx.doi.org/10.1016/j.brainresrev.2006.06.003
[69] Jelic, V. and Kowalski, J. (2009) Evidence-Based Evaluation of Diagnostic Accuracy of Resting EEG in Dementia and Mild Cognitive Impairment. Clinical EEG and Neuroscience, 40, 129-142.
http://dx.doi.org/10.1177/155005940904000211
[70] Paré, D., Collins, D.R and Pelletier, J.G. (2002) Amygdala Oscillations and the Consolidation of Emotional Memories. Trends in Cognitive Sciences, 6, 306-314.
http://dx.doi.org/10.1016/S1364-6613(02)01924-1
[71] Garolera, M., Coppola, R., Muñoz, K.E., Elvevåg, B., Carver, F.W., Weinberger, D.R. and Goldberg, T.E. (2007) Amygdala Activation in Affective Priming: A Magnetoencephalogram Study. Neuroreport, 18, 1449-1453.
http://dx.doi.org/10.1097/WNR.0b013e3282efa253
[72] Young, K.A., Holcomb, L.A., Bonkale, W.L., Hicks, P.B., Yazdani, U. and German, D.C. (2007) 5HTTLPR Poly-morphism and Enlargement of the Pulvinar: Unlocking the Backdoor to the Limbic System. Biological Psychiatry, 61, 813-818.
http://dx.doi.org/10.1016/j.biopsych.2006.08.047
[73] Ellison, J.M., Harper, D.G., Berlow, Y. and Zeranski, L. (2008) Beyond the “C” in MCI: Noncognitive Symptoms in Amnestic and Non-Amnestic Mild Cognitive Impairment. CNS Spectrums, 13, 66-72.
[74] Johannsen, P., Jacobsen, J., Bruhn, P. and Gjedde, A. (1999) Cortical Responses to Sustained and Divided Attention in Alzheimer’s Disease. Neuroimage, 10, 269-281.
http://dx.doi.org/10.1006/nimg.1999.0475
[75] Berardi, A.M., Parasuraman, R. and Haxby, J.V. (2005) Sustained Attentino in Mild Alzheimer’s Disease. Developmental Neuropsychology, 28, 507-537.
http://dx.doi.org/10.1207/s15326942dn2801_4
[76] Levinoff, E.J., Saumier, D. and Chertkow, H. (2005) Focused Attention Deficits in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Brain and Cognition, 57, 127-130.
http://dx.doi.org/10.1016/j.bandc.2004.08.058
[77] Tales, A., Haworth, J., Nelson, S., Snowden, R.J. and Wilcock, G. (2005) Abnormal Visual Search in Mild Cognitive Impairment and Alzheimer’s Disease. Neurocase, 11, 80-84.
http://dx.doi.org/10.1080/13554790490896974
[78] Tales, A., Snowden, R.J., Haworth, J. and Wilcock, G. (2005) Abnormal Spatial and Non-Spatial Cueing Effects in Mild Cognitive Impairment and Alzheimer’s Disease. Neurocase, 11, 85-92.
http://dx.doi.org/10.1080/13554790490896983
[79] Zalay, O.C. and Bardakjian, B.L. (2006) Simulated Mossy Fiber Associated Feedforward Circuit Functioning as a Highpass Filter. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 4979-4982.
http://dx.doi.org/10.1109/IEMBS.2006.260702
[80] Frisoni, G.B., Galluzzi, S., Bresciani, L., Zanetti, O. and Geroldi, C. (2002) Mild Cognitive Impairment with Subcortical Vascular Features: Clinical Characteristics and Outcome. Journal of Neurology, 249, 1423-1432.
http://dx.doi.org/10.1007/s00415-002-0861-7
[81] Galluzzi, S., Sheu, C.F., Zanetti, O. and Frisoni, G.B. (2005) Distinctive Clinical Features of Mild Cognitive Impairment with Subcortical Cerebrovascular Disease. Dementia and Geriatric Cognitive Disorders, 19, 196-203.
http://dx.doi.org/10.1159/000083499
[82] Steriade, M. and Llinas, R.R. (1988) The Functional States of the Thalamus and the Associated Neuronal Interplay. Physiological Reviews, 68, 649-742.
[83] da Silva, F.H.L., van Rotterdam, A., Barts, P., van Heusden, E. and Burr, W. (1976) Models of Neuronal Populations: The Basic Mechanism of Rhythmicity. In: Corner, M.A. and Swaab, D.F., Eds., Perspectives of Brain Research, Progress in Brain Research, vol. 45, Elsevier, Amsterdam, 281-308.
http://dx.doi.org/10.1016/S0079-6123(08)60995-4
[84] Nunez, P.L., Wingeier, B.M. and Silberstein, R.B. (2001) Spatial-Temporal Structures of Human Alpha Rhythms: Theory, Microcurrent Sources, Multiscale Measurements, and Global Binding of Local Networks. Human Brain Mapping, 13, 125-164.
http://dx.doi.org/10.1002/hbm.1030
[85] Doiron, B., Chacron, M.J., Maler, L., Longtin, L. and Bastian, J. (2003) Inhibitory Feedback Required for Network Oscillatory Responses to Communication but Not Prey Stimuli. Nature, 421, 538-543.
[86] Nunez, P.L. and Srinivasan, R.A. (2006) Theoretical Basis for Standing and Traveling Brain Waves, Clinical Neurophysiology, 117, 2425-2435.
[87] Szelies, B., Mielke, R., Kessler, J. and Heiss, W.D. (1999) EEG Power Changes Are Related with Regional Cerebral Glucose Metbolism in Vascular Dementia. Clinical Neurophysiology, 110, 615-620.
http://dx.doi.org/10.1016/S1388-2457(98)00052-2
[88] Leocani, L., Locatelli, T., Martinelli, V., Rovaris, M., Falautano, M., Filippi, M., Magnani, G. and Comi G. (2000) Electroencephalographic Coherence Analysis in Multiple Sclerosis: Correlation with Clinical, Neuropsychological, and MRI Findings. Journal of Neurology, Neurosurgery, and Psychiatry, 69, 192-198.
http://dx.doi.org/10.1136/jnnp.69.2.192
[89] Goldensohn, E.S. (1979) Use of EEG for Evaluation of Focal Intracranial Lesions. In: Klass, D.W. and Daly, D.D., Eds., Current Practice of Clinical Electroencephalography, Raven, New York, 307-341.
[90] Jelic, V., Hagman, G., Yamamoto, N.G., Teranishi, Y., Nishimura, T., Winblad, B. and Pavlov, P.F. (2013) Abnormal Platelet Amyloid-β Protein Precursor (AβPP) Metabolism in Alzheimer’s Disease: Identification and Characterization of a New AβPP Isoform as Potential Biomarker. Journal of Alzheimer’s Disease, 35, 285-295.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.