Reconstruction of the Vegetation and Environment during Different Climatic and Sociotechnical Conditions of the Last 3000 Years in Southwestern Hungary


Sedimentary basins such as Lake Baláta in Southwestern Hungary provide information about the development of lake-bog systems, the climate change through time and the environment of the surrounding area. The present study provides combined palynological, anthracological and macrobotanical data regarding climatic, vegetation and hydrological changes of a protected area for the last 3000 years. Lake Baláta is a sedimentary basin developed in a wind-blown yardang system in Southwestern Hungary. Due to its deeper location and the higher groundwater-level, the boggy lake functioned as a sediment catch. Geological drilling with an auger head drill provided an undisturbed sediment core. During the laboratory analysis different methods, such as sedimentological, geochemical, macrofossil, pollen and charcoal analysis were applied. The different stages and the evolution of the lake-bog system and the vegetation around the lake could be reconstructed and human impact was detected for the last 3000 years. Human impact and the transformation of vegetation was detected from the Early Iron Age (900/800 BC). Human impact reached its maximum during the 10th and 12th centuries when extent plant cultivation and grazing field zones were created. Climate change, increasing precipitation and consequently forest regeneration started in the 13th and 14th centuries. Parallel to this human impact decreased in the study area that indicates the reduction of the population and agrarian activity. Later at the beginning of the 15th century human impact increased again and remained significant until to the 16th century.

Share and Cite:

Náfrádi, K. , Sümegi, P. , Jakab, G. , Persaits, G. and Törőcsik, T. (2014) Reconstruction of the Vegetation and Environment during Different Climatic and Sociotechnical Conditions of the Last 3000 Years in Southwestern Hungary. American Journal of Plant Sciences, 5, 1557-1577. doi: 10.4236/ajps.2014.511170.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Willis, K.J., Sümegi, P., Braun, M. and Tóth, A. (1995) The Late Quaternary Environmental History of Bátorliget, N.E. Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 118, 25-47.
[2] Willis, K.J., Sümegi, P., Braun, M., Bennett, K.D. and Tóth, A. (1998) Prehistoric Land Degradation in Hungary: Who, How and Why? Antiquity, 72, 101-113.
[3] Magyari, E., Sümegi, P., Braun, M., Jakab, G. and Molnár, M. (2001) Retarded Wetland Succession: Anthropogenic and Climatic Signals in a Holocene Peat Bog Profile from North-East Hungary. Journal of Ecology, 89, 1019-1032.
[4] Magyari, E.K., Buczkó, K., Jakab, G., Braun, M., Pál, Z. and Karátson, D. (2009) Palaeolimnology of the Last Eastern Carpathian Crater Lake: A Multiproxy Study of Holocene Hydrological Changes. Hydrobiology, 631, 29-63.
[5] Vaday, A. (2004) Chronological Charts. In: Visy, Zs., Ed., Hungarian Archaeology in the Turn of the Millennium, Ministry of National Cultural Heritage, Teleki László Foundation, Budapest, 473-477.
[6] Borhidi, A. and Járai-Komlódi, M. (1959) Die Vegetation des Naturschutzgebietes des Baláta Sees (Vegetation of the Reserve Area of Lake Baláta). Acta Botaniqua Academia Science Hungarica, 5, 259-320.
[7] Borhidi, A. and Járai-Komlódi, M. (1959) A csapadék-és vízszint-ingadozás összefüggése a Baláta-tó természetvédelmi területén (Rainfall and water level fluctuation correlation in Nature Reserve area of Lake Baláta). Idöjárás, 63, 225-229.
[8] Borhidi, A. (1968) Dynamical Changes of Free Floating Water-Plant Communities of Different N-Sources in the Nature Reservation Area of Baláta-Pond. Acta Biologica Hungarica, 19, 19.
[9] Borhidi, A. and Járai-Komlódi M. (1960) A Baláta-tó növényvilága (Flora of Lake Baláta). Természettudományi Közlöny, 91, 501-503.
[10] Marosi, S. (1970) Belsö-Somogy kialakulása és felszínalaktana (Evolution and Geomorphology of Belsö-Somogy). Akadémiai Kiadó, Budapest.
[11] Marián, M. (1957) A Baláta gerinces állatvilága (Vertebrata fauna of Lake Baláta). Somogyi Almanach I., Kaposvár.
[12] Kasza, F. and Marián, M. (2001) A Baláta láp és gerinces állatvilága, különös tekintettel a madarakra (Vertebrata Fauna of Lake Baláta, Especially Birds). Natura Somogyensis 2, Kaposvár.
[13] P. Barna, J. (2007) Középsö és késöi újkökor átmenete: Sopot kultúra. Sormás-Mántai-dülö és Sormás-Török-földek (Middle and Late Neolithic Transition: Sopot Culture. Sormás-Mántai-dülö and Sormás-Török-földek Site. In: Ilon, G., Ed., Wonderful Beauties—Human Representations in Prehistoric Western Hungary, Vas Megyei Múzeumok Igazgatósága, Szombathely, 84-99.
[14] Jowsey, P.C. (1966) An Improved Peat Sampler. New Phytologist, 65, 245-248.
[15] Aaby, B. and Digerfeldt, G. (1986) Sampling Techniques for Lakes and Bogs. In: Berglund, B.E., Ed., Handbook for Holocene Palaeoecology and Palaeohydrology, John Wiley and Sons Ltd., Chichester, 181-194.
[16] Bennett, K.D. (1992) Psimpoll—A Quickbasic Program That Generates Postscript Page Description of Pollen Diagrams. INQUA Commission for the Study of the Holocene: Working Group on Data-Handling Methods, Newsletter 8, 11-12.
[17] Troels-Smith, J. (1955) Karakterisering af lose jordater (Characterisation of Unconsolidated Sediments). Danmarks Geologiske Undersogelse, 3, 39-73.
[18] Dean, W.E. (1974) Determination of Carbonate and Organic Matter in Calcareous Sediments and Sedimentary Rocks by Loss on Ignition: Comparison with Other Methods. Journal of Sedimentology Research, 44, 242-248.
[19] Dániel, P., Kovács, B., Györi, Z. and Sümegi, P. (1996) New Complex Geochemical Investigation Method for Lake Sediments. Abstracts of 4th Soil and Sediment Contaminant Analysis Workshop, Lausanne.
[20] Dániel, P. (2004) Geochemical Analysis. In: Sümegi, P. and Gulyás, S., Eds., The Geohistory of Bátorliget Marshland, Archaeolingua Press, Budapest, 52-57.
[21] Sümegi, P. (1999) Reconstruction of Flora, Soil and Landscape Evolution, and Human Impact on the Bereg Plain from Late-Glacial up to the Present, Based on Palaeoecological Analysis. In: Hamar, J. and Sárkány-Kiss, A., Eds., The Upper Tisa Valley, Tiscia Monograph Series, Szeged, 173-204.
[22] Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation and Interpretation. Longman, London, Essex.
[23] Dowdeswell, J.A. (1982) Relative Dating of Late Quaternary Deposits Using Cluster and Discriminant Analysis, Audubon Cirque, Mt. Audubon, Colorado Front Range. Boreas, 11, 151-161.
[24] Barber, K.E., Chambers, F.M., Maddy, D. and Brew, J. (1994) A Sensitive High Resolution Record of the Holocene Climatic Change from a Raised Bog in Northern England. Holocene, 4, 198-205.
[25] Jakab, G., Sümegi, P. and Magyari, E. (2004) A New Palaeobotanical Method for the Description of Late Quaternary Organic Sediments (Mire-Development Pathways and Palaeoclimatic Records from S Hungary). Acta Geologica Hungarica, 47, 373-409.
[26] Jakab, G. and Sümegi, P. (2004) A lágyszárú növények tözegben található maradványainak határozója mikroszkópikus bélyegek alapján (Identifying of Herbaceous Plant Remains from Peat on the Basis of Microscopic Features). Kitaibelia, 9, 93-129.
[27] Juhász, I.E., Jakab, G. and Sümegi, P. (2004) Vegetation Dynamics of a Small Sphagnum Peat Bog from North Hungary, from the Late Pleistocene until Late Holocene: Palynological and Macrobotanical Data. Abstracts of the 11th International Palynological Congress, Granada, 508.
[28] Juhász, I. (2005) Preliminary Palynological Results from the Nádas-to peat bog at Nagybárkány, North-East Hungary. The Late Holocene Environmental History. In: Gál, E., Juhász, I. and Sümegi, P., Eds., Environmental Archaeology in North-Eastern Hungary, Varia Archaeologica Hungarica, Budapest, 79-85.
[29] Berglund, B.E. and Ralska-Jasiewiczowa, M. (1986) Pollen Analysis and Pollen Diagrams. In: Berglund, B.E., Ed., Handbook of Holocene Palaeoecology and Palaeohydrology, John Wiley and Sons Press, Chichester, 455-484.
[30] Stockmarr, J. (1971) Tablets with Spores Used in Absolute Pollen Analysis. Pollen et Spores, 13, 615-621.
[31] Maher Jr., L.J. (1972) Nomograms for Counting 0.95 Confidence Limits of Pollen Data. Review of Palaeobotaní and Palynology, 13, 85-93.
[32] Clark, R.L. (1982) Point Count Estimation of Charcoal in Pollen Preparation and Thin Sections of Sediments. Pollen et Spores, 24, 523-535.
[33] Moore, P.D., Webb, J.A. and Collinson, M.E. (1991) Pollen Analysis. Blackwell Scientific Publications, Oxford.
[34] Beug, H.J. (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Guide to the Pollen Analysis for Central Europe and the Adjacent Areas). Pfeil, München.
[35] Punt, W. (1980) Pollen Morphology of the Phyllanthus Species (Euphorbiaceae) Occuring in New Guinea. Review of Palaeobotany and Palynology, 31, 155-177.
[36] Kozáková, R. and Pokorny, P. (2007) Dynamics of the Biotopes at the Edge of a Medieval Town: Pollen Analysis of Vltava River Sediments in Prague, Czech Republic. Preslia, 79, 259-281.
[37] Reille, M. (1992) Pollen et spores d’europe et d’afrique du nord (Pollen and Spores of Europe and North Africa). Laboratoire de Botanique historique et Palynologie, Marseille.
[38] Reille, M. (1995) Pollen et Spores d’Europe et d’Afrique du Nord. Supplement 1 (Pollen and Spores of Europe and North Africa, Supplement 1). Laboratoirede Botanique Historique et Palynologie, Marseille.
[39] Reille, M. (1998) Pollen et Spores d’Europe et d’Afrique du Nord. Supplement 2 (Pollen and Spores of Europe and North Africa, Supplement 2). Laboratoirede Botanique Historique et Palynologie, Marseille.
[40] Sümegi, P., Náfrádi, K. and Töröcsik, T. (2011) The Methology Employed. In: Kvassay, J., Ed., The Late Urnfield Period Cemetery from Szombathely-Zanat Supplemented by an Assessment of Prehistoric and Medieval Settlement Features and Interdisciplinary Analysses, VIA-Monographia Minor in Cultural Heritage 2, Hungarian National Museum—National Cultural Heritage Protection Centre, Budapest, 203-214.
[41] Jacomet, S. and Kreuz, A. (1999) Archäobotanik. Aufgaben, Methoden und Ergebnisse vegetations und agrargeschichtlicher Forschung (Archaeobotany. Tasks, Methods and Results of Vegetation and Agro-Historical Research). Ulmer, Stuttgart.
[42] Gyulai, F. (2001) Archaeobotanika. A kultúrnövények története a Kárpát-medencében a régészeti növénytani vizsgálatok alapján (Archeobotany. History of Domesticated Plants in the Carpathian Basin on the Basis of Archaeological Plant Analyses). Jószöveg Mühely, Budapest.
[43] Chabal, L., Fabre, L., Terral, J.F. and Théry-Parisot, I. (1999) L’anthracologie (Anthracology). In: Bourquin-Mignot, C., Brochier, J.E., Chabal, L., Crozat, S., Fabre, L., Guibal, F., Marinval, P., Richard, H., Terral, J.F. and Théry, I., Eds., La Botanique, France, Paris, 43-104.
[44] Asouti, E. and Austin, P. (2005) Reconstructing Woodland Vegetation and Its Exploitation by Past Societies, Based on the Analysis and Interpretation of Archaeological Wood Charcoal Macro-Remains. Environmental Archeology, 10, 1-18.
[45] Greguss, P. (1945) A középeurópai lomblevelü fák és cserjék meghatározása szövettani alapon (Identification of Deciduous Trees and Shrubs in Central Europe). Országos Magyar Természettudományi Múzeum, Budapest.
[46] Greguss, P. (1972) Xyotomy of the Living Conifers. Akadémia Kiadó, Budapest.
[47] Schweingruber, F.H. (1990) Microscopic Wood Anatomy. Eidgenössiche Forschungsantalt für Wald, Schnee und Landchaft, Birmensdorf.
[48] Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk-Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M. and Van der Plicht, J. (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50000 Years calBP. Radiocarbon, 55, 1869-1887.
[49] Sümegi, P. (2003) Régészeti geológia és történeti ökológia alapjai (Basics of Geoarchaeology and Historical Ecology). JATE Press, Szeged.
[50] Sümegi, P. (2007) Description of the Sampling Location at Baláta-tó. In: Zatykó, Cs., Juhász, I. and Sümegi, P., Eds., Environmental Archaeology in Transdanubia (Hungary), Varia Archaeologica Hungarica, Budapest, 322-324.
[51] Balogh, M. (1983) A Velencei-tó nyugati medencéjének úszólápjai és hatásuk a tó vízminöségére (Floating Mats and Their Effect on Water Quality in the Western Side of Lake Velencei). Candidate Dissertation, MTA-VITUKI, Budapest.
[52] Balogh, M. (2000) Az úszólápi szukcesszió kérdései I. (Questions of Floating Mat Succession I.). Kitaibelia, 5, 9-16.
[53] Braun, M., Sümegi, P., Szücs, L. and Szöör, G. (1993) A kállósemjéni Nagy-Mohos láp fejlödéstörténete (Lápképzödés emberi hatásra és az ösláp hipotézis) (Evolution of Nagy-Mohos Bog in Kállósemjén). Jósa András Múzeum évkönyve, 33-35, 335-366.
[54] Sümegi, P. (1996) Az éK-magyarországi löszterületek összehasonlító öskörnyezeti és sztratigráfiai értékelése (Paleoenvironmental and Stratigraphic Analysis of NS Hungarian Loess Areas). Candidate Dissertation, University of Debrecen, Debrecen.
[55] Sümegi, P., Magyari, E., Daniel, P., Hertelendi, E. and Rudner, E. (1999) A kardoskúti Fehér-tó negyedidöszaki fejlödéstörténetének rekonstrukciója (Quaternary Evolution and Its Reconstruction of Lake Fehér in Kardoskút). Földtani Közlöny, 129, 479-519.
[56] Sümegi, P. (2004) The Results of Paleoenvironmental Reconstruction and Comparative Geoarcheological Analysis for the Examined Area. In: Sümegi, P. and Gulyás, S., Eds., The Geohistory of Bátorliget Marshland, Archaeolingua Press, Budapest, 301-348.
[57] Sümegi, P., Jakab, G., Majkut, P., Töröcsik, T. and Zatykó, C. (2009) Middle Age Paleoecological and Paleoclimatological Reconstruction in the Carpathian Basin. Idöjárás, 113, 265-298.
[58] Juhász, I. (2007) Comparison and Correlation of Four Pollen Sequences from the Little Balaton Region (Zalavár, Fönyed, Keszthely and Alsópáhok). In: Zatykó, Cs., Juhász, I., and Sümegi, P., Eds., Environmental Archaeology in Transdanubia (Hungary), Varia Archaeologica Hungarica 20, Budapest, 36-51.
[59] Magny, M., Mouthon, J. and Ruffaldi, P. (1995) Late Holocene Level Fluctuations of the Lake Ilay in Jura, France: Sediment and Mollusc Evidence and Climatic Implications. Journal of Paleolimnology, 13, 219-229.
[60] Holzhauser, H., Magny, M. and Zumbuühl, H.J. (2005) Glacier and Lake-Level Variations in West-Central Europe over the Last 3500 Years. Holocene, 15, 789-801.
[61] Davis, B., Brewer, S., Stevenson, T. and Juggins, S. (2001) High Resolution from Low Resolution; a New Method for Time-Series Pollen-Climate Reconstruction and Its Application in Investigating Abrupt Holocene Climate Change in Southern Europe/Mediterranean. Abstracts of PAGES-PEPIII: Past Climate Variability through Europe and Africa.
[62] Davis, B.A.S., Brewer, S., Stevenson, A.C. and Guiot, J. (2003) The Temperature of Europe during the Holocene Reconstructed from Pollen Data. Quaternary Science Reviews, 22, 1701-1716.
[63] Magyari, E. (2002) Climatic versus Human Modification of the Late Quaternary Vegetation in Eastern Hungary. Ph.D. Dissertation, University of Debrecen, Debrecen.
[64] Kreuz, A. (1992) Charcoal from Ten Early Neolithic Settlements in Central Europe and Its Interpretation in Terms of Woodland Management and Wildwood Resources. Bulletin de la Société Botanique de France Acta Botanique, 139, 383-394.
[65] Náfrádi, K., Bodor, E., Töröcsik, T. and Sümegi, P. (2011) Vegetation History Reconstructed from Anthracology and Pollen Analysis at the Rescue Excavation of the MO Motorway, Hungary. Central European Journal of Geosciences, 3, 358-367.
[66] Náfrádi, K., Sümegi, P. and Töröcsik, T. (2012) Charcoal and Pollen Analyses and Vegetation Reconstruction of the Alpine Foreland in West Hungary. Central European Journal of Geosciences, 4, 592-602.
[67] Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundenstrup, N.S., Hammer, C.J., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J. and Bond, G. (1993) Climate Instability during the Last Interglacial Period Recorded in the GRIP Ice Core. Nature, 364, 203-207.
[68] Grootes, P.M., Stuiver, M.J., White, J.W.C., Johnsen, S. and Jouzel, J. (1993) Comparison of Oxygen Isotope Records from the GISP2 and GRIP Greenland Ice Cores. Nature, 36, 552-554.
[69] Magny, M. (2004) Holocene Climatic Variability as Reflected by Mid-European Lake-Level Fluctuations, and Its Probable Impact on Prehistoric Human Settlements. Quaternary International, 113, 65-79.
[70] Lamb, H.H. (1995) Climate, History and the Modern World. Routledge Press, London.
[71] Stuiver, M., Grootes, P.M. and Braziunas, T.F. (1995) The GISP2 δ18O Climate Record of the Past 16,500 Years and the Role of the Sun, Ocean, and Volcanoes. Quaternary Research, 44, 341-354.
[72] Telford, R.J., Heegaard, E. and Birks, H.J.B. (2004) All Age-Depth Models Are Wrong: But How Badly? Quaternary Science Reviews, 23, 1-5.
[73] Szabó, P. (2002) Erdök, erdészet, erdészettörténet (Forests, Forestry, History of Forestry). Soproni Szemle, 56, 390-392.
[74] Szabó, P. (2005) Woodland and Forests in Medieval Hungary. Archaeopress, Oxford.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.