High Order Central Schemes Applied to Relativistic Multi-Component Flow Models

Abstract

The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central schemes to solve these equations. The equilibrium states for each component are coupled in space and time to have a common temperature and velocity. The current schemes can handle strong shocks and the oscillations near the interfaces are negligible, which usually happens in the multi-component flows. The schemes also guarantee the exact mass conservation for each component, the exact conservation of total momentum, and energy in the whole particle system. The central schemes are robust, reliable, compact and easy to implement. Several one- and two-dimensional numerical test cases are included in this paper, which validate the application of these schemes to relativistic multi-component flows.

Share and Cite:

Ghaffar, T. , Yousaf, M. , Sultan, S. and Qamar, S. (2014) High Order Central Schemes Applied to Relativistic Multi-Component Flow Models. Applied Mathematics, 5, 1169-1186. doi: 10.4236/am.2014.58109.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wilson, J.R. (1972) A Numerical Study of Fluid Flows in a Kerr Space. The Astrophysical Journal, 173, 431-438.
http://dx.doi.org/10.1086/151434
[2] Wilson, J.R. (1972) A Numerical Method for Relativistic Hydrodynamics. In: Smarr, L.L., Ed., Sources of Gravitational Radiation, Cambridge University Press, Cambridge, 423-446.
[3] von Neumann, J. and Richtmyer, R.D. (1950) A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics, 21, 232-237.
http://dx.doi.org/10.1063/1.1699639
[4] Centrella, J. and Wilson, J.R. (1984) Planar Numerical Cosmology II: The Difference Equations and Numerical Tests. The Astrophysical Journal, 54, 229-249.
[5] Norman, M.L. and Winkler, K.-H.A. (1986) Why Ultrarelativistic Hydrodynamics Is Difficult. In: Normnanand, M.L. and Winkler, K.-H.A., Eds., Astrophysical Radiation Hydrodynamics, Reidel, Dordrecht, 449-476.
[6] Dean, D.J., Bottcher, C. and Strayer, M.R. (1993) Spline Techniques for Solving Relativistic Equations. International Journal of Modern Physics, C4, 723-747.
http://dx.doi.org/10.1142/S0129183193000616
[7] Marti, J.M. and Müller, E. (1999) Numerical Hydrodynamics in Special Relativity. Living Reviews in Relativity, 2, 1-101.
http://dx.doi.org/10.12942/lrr-1999-3
[8] Rao, P.L. (1981) Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. Journal of Computational Physics, 43, 357-372.
http://dx.doi.org/10.1016/0021-9991(81)90128-5
[9] Eulderink, F. (1993) Numerical Relativistic Hydrodynamics. Ph.D. Thesis, Rijks-univerteit te Leiden, Leiden.
[10] Eulderink, F. and Mellema, G. (1995) General Relativistic Hydrodynamics with a Roe Solver. Astronomy and Astrophysics Supplement, 110, 587-623.
[11] Colella, P. and Woodward, P.R. (1993) The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. Journal of Computational Physics, 54, 174-201.
http://dx.doi.org/10.1016/0021-9991(84)90143-8
[12] Marti, J.M. and Müller, E. (1996) Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics. Journal of Computational Physics, 123, 1-14.
http://dx.doi.org/10.1006/jcph.1996.0001
[13] Glimm, J. (1965) Solution in the Large for Nonlinear Hyperbolic Systems of Equations. Communications on Pure and Applied Mathematics, 18, 697-715.
http://dx.doi.org/10.1002/cpa.3160180408
[14] Wen, L., Panaitescu, A. and Laguna, P. (1997) A Shock-Patching Code for Ultra-Relativistic Fluid Flows. The Astrophysical Journal, 486, 919-927.
http://dx.doi.org/10.1086/304547
[15] Harten, A., Lax, P.D. and van Leer, B. (1983) On Upstream Differencing and Godunov-Tyoe Schemes for Hyperbolic Conservation Laws, SIAM Review, 25, 35-61.
http://dx.doi.org/10.1137/1025002
[16] Schneider, V., Katscher, U., Rischke, D.H., Waldhauser, B., Maruhn, J.A. and Munz, C.-D. (1993) New Algorithms for Ultra-Relativistic Numerical Hydrodynamics. Journal of Computational Physics, 105, 92-107.
http://dx.doi.org/10.1006/jcph.1993.1056
[17] Donat, R. and Marquina, A. (1996) Capturing Shock Reflections: An Improved Flux Formula. Journal of Computational Physics, 125, 42-58.
http://dx.doi.org/10.1006/jcph.1996.0078
[18] Marti, J.Ma., Müller, E., Font, J.A. and Ibanez, J.Ma. (1995) Morphology and Dynamics of Highly Supersonic Relativistic Jets. The Astrophysical Journal Letters, 448, L105-L108.
http://dx.doi.org/10.1086/309606
[19] Sanders, R.H. and Prendergast, K.H. (1974) The Possible Relation of the 3-Kiloparsec Arm to Explosions in the Galactic Nucleus. Astrophysical Journal, 188, 489-500.
http://dx.doi.org/10.1086/152739
[20] Yang, J.Y., Chen, M.H., Tsai, I.-N. and Chang, J.W. (1997) A Kinetic Beam Scheme for Relativistic Gas Dynamics. Journal of Computational Physics, 136, 19-40.
http://dx.doi.org/10.1006/jcph.1997.5767
[21] Fedkiw, R.P., Aslam, T., Merriman, B. and Osher, S. (1999) A Non-Oscillatory Eulerian Approach to Interfaces in Mathematical Flows (the Ghost Fluid Method). Journal of Computational Physics, 152, 457-492.
http://dx.doi.org/10.1006/jcph.1999.6236
[22] Fedkiw, R.P., Liu, X.D. and Osher, S. (1997) A General Technique for Elimination of Spurious Oscillations in Conservative Scheme for Multi-Phase and Multi-Species Euler Equations. UCLA CAM Report, 97-27.
[23] Karni, S. (1992) Viscous Shock Profiles and Premitive Formulations. SIAM Journal on Numerical Analysis, 29, 1592-1609.
http://dx.doi.org/10.1137/0729092
[24] Karni, S. (1994) Multicomponent Flow Calculations by a Consistent Primitive Algorithm. Journal of Computational Physics, 112, 31-43.
http://dx.doi.org/10.1006/jcph.1994.1080
[25] Karni, S. (1996) Hybrid Multifluid Algorithms. SIAM Journal on Scientific Computing, 17, 1019-1039.
http://dx.doi.org/10.1137/S106482759528003X
[26] Quirk, J.J. and Karni, S. (1996) On the Dynamics of a Shock Bubble Interaction. Journal of Fluid Mechanics, 318, 1291-163.
http://dx.doi.org/10.1017/S0022112096007069
[27] Marquina, A. and Mulet, P. (2002) A Flux-Split Algorithm Applied to Conservative Model for Multicomponent Compressible Flows. GrAN Report 02-01.
[28] Xu, K. (1997) BGK-Based Scheme for Multicomponent Flow Calculations. Journal of Computational Physics, 134, 122-133.
http://dx.doi.org/10.1006/jcph.1997.5677
[29] Lian, Y. and Xu, K. (1999) A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction. ICASE Report No. 99-28.
[30] Nessayahu, H. and Tadmor, E. (1990) Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. Journal of Computational Physics, 87, 408-448.
http://dx.doi.org/10.1016/0021-9991(90)90260-8
[31] Jaing, G.-S. and TadMor, E. (1998) Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM Journal on Scientific Computing, 19, 1892-1917.
http://dx.doi.org/10.1137/S106482759631041X
[32] Xu, K. (1998) Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability. ICASE Report No. Tr. 99-6.
[33] Konigl, A. (1980) Relativistic Gasdynamics in Two Dimensions. Physics of Fluids, 23, 1083-1090.
http://dx.doi.org/10.1063/1.863110
[34] Aloy, M.A., Ibanez, J.M., Marti, J.M. and Muller, E. (1999) GENESIS: A High-Resolution Code for 3-D Relativistic Hydrodynamics. The Astrophysical Journal Supplement Series, 122, 151-166.
http://dx.doi.org/10.1086/313214
[35] Hawley, J.F., Smarr, L.L. and Wilson, J.R. (1984) A Numerical Study of Nonspherical Black Hole Accretion. II. Finite Differencing and Code Calibration. The Astrophysical Journal Supplement Series, 55, 211-246.
http://dx.doi.org/10.1086/190953
[36] Norman, M.L. and Winkler, K.-H.A. (1986) Why Ultrarelativistic Hydrodynamics is Difficult. Astrophysical Radiation Hydrodynamics, 188, 449-475.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.