[1]
|
Wilson, J.R. (1972) A Numerical Study of Fluid Flows in a Kerr Space. The Astrophysical Journal, 173, 431-438. http://dx.doi.org/10.1086/151434
|
[2]
|
Wilson, J.R. (1972) A Numerical Method for Relativistic Hydrodynamics. In: Smarr, L.L., Ed., Sources of Gravitational Radiation, Cambridge University Press, Cambridge, 423-446.
|
[3]
|
von Neumann, J. and Richtmyer, R.D. (1950) A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics, 21, 232-237. http://dx.doi.org/10.1063/1.1699639
|
[4]
|
Centrella, J. and Wilson, J.R. (1984) Planar Numerical Cosmology II: The Difference Equations and Numerical Tests. The Astrophysical Journal, 54, 229-249.
|
[5]
|
Norman, M.L. and Winkler, K.-H.A. (1986) Why Ultrarelativistic Hydrodynamics Is Difficult. In: Normnanand, M.L. and Winkler, K.-H.A., Eds., Astrophysical Radiation Hydrodynamics, Reidel, Dordrecht, 449-476.
|
[6]
|
Dean, D.J., Bottcher, C. and Strayer, M.R. (1993) Spline Techniques for Solving Relativistic Equations. International Journal of Modern Physics, C4, 723-747. http://dx.doi.org/10.1142/S0129183193000616
|
[7]
|
Marti, J.M. and Müller, E. (1999) Numerical Hydrodynamics in Special Relativity. Living Reviews in Relativity, 2, 1-101.
http://dx.doi.org/10.12942/lrr-1999-3
|
[8]
|
Rao, P.L. (1981) Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. Journal of Computational Physics, 43, 357-372. http://dx.doi.org/10.1016/0021-9991(81)90128-5
|
[9]
|
Eulderink, F. (1993) Numerical Relativistic Hydrodynamics. Ph.D. Thesis, Rijks-univerteit te Leiden, Leiden.
|
[10]
|
Eulderink, F. and Mellema, G. (1995) General Relativistic Hydrodynamics with a Roe Solver. Astronomy and Astrophysics Supplement, 110, 587-623.
|
[11]
|
Colella, P. and Woodward, P.R. (1993) The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. Journal of Computational Physics, 54, 174-201. http://dx.doi.org/10.1016/0021-9991(84)90143-8
|
[12]
|
Marti, J.M. and Müller, E. (1996) Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics. Journal of Computational Physics, 123, 1-14. http://dx.doi.org/10.1006/jcph.1996.0001
|
[13]
|
Glimm, J. (1965) Solution in the Large for Nonlinear Hyperbolic Systems of Equations. Communications on Pure and Applied Mathematics, 18, 697-715. http://dx.doi.org/10.1002/cpa.3160180408
|
[14]
|
Wen, L., Panaitescu, A. and Laguna, P. (1997) A Shock-Patching Code for Ultra-Relativistic Fluid Flows. The Astrophysical Journal, 486, 919-927. http://dx.doi.org/10.1086/304547
|
[15]
|
Harten, A., Lax, P.D. and van Leer, B. (1983) On Upstream Differencing and Godunov-Tyoe Schemes for Hyperbolic Conservation Laws, SIAM Review, 25, 35-61. http://dx.doi.org/10.1137/1025002
|
[16]
|
Schneider, V., Katscher, U., Rischke, D.H., Waldhauser, B., Maruhn, J.A. and Munz, C.-D. (1993) New Algorithms for Ultra-Relativistic Numerical Hydrodynamics. Journal of Computational Physics, 105, 92-107. http://dx.doi.org/10.1006/jcph.1993.1056
|
[17]
|
Donat, R. and Marquina, A. (1996) Capturing Shock Reflections: An Improved Flux Formula. Journal of Computational Physics, 125, 42-58. http://dx.doi.org/10.1006/jcph.1996.0078
|
[18]
|
Marti, J.Ma., Müller, E., Font, J.A. and Ibanez, J.Ma. (1995) Morphology and Dynamics of Highly Supersonic Relativistic Jets. The Astrophysical Journal Letters, 448, L105-L108.
http://dx.doi.org/10.1086/309606
|
[19]
|
Sanders, R.H. and Prendergast, K.H. (1974) The Possible Relation of the 3-Kiloparsec Arm to Explosions in the Galactic Nucleus. Astrophysical Journal, 188, 489-500. http://dx.doi.org/10.1086/152739
|
[20]
|
Yang, J.Y., Chen, M.H., Tsai, I.-N. and Chang, J.W. (1997) A Kinetic Beam Scheme for Relativistic Gas Dynamics. Journal of Computational Physics, 136, 19-40. http://dx.doi.org/10.1006/jcph.1997.5767
|
[21]
|
Fedkiw, R.P., Aslam, T., Merriman, B. and Osher, S. (1999) A Non-Oscillatory Eulerian Approach to Interfaces in Mathematical Flows (the Ghost Fluid Method). Journal of Computational Physics, 152, 457-492. http://dx.doi.org/10.1006/jcph.1999.6236
|
[22]
|
Fedkiw, R.P., Liu, X.D. and Osher, S. (1997) A General Technique for Elimination of Spurious Oscillations in Conservative Scheme for Multi-Phase and Multi-Species Euler Equations. UCLA CAM Report, 97-27.
|
[23]
|
Karni, S. (1992) Viscous Shock Profiles and Premitive Formulations. SIAM Journal on Numerical Analysis, 29, 1592-1609. http://dx.doi.org/10.1137/0729092
|
[24]
|
Karni, S. (1994) Multicomponent Flow Calculations by a Consistent Primitive Algorithm. Journal of Computational Physics, 112, 31-43. http://dx.doi.org/10.1006/jcph.1994.1080
|
[25]
|
Karni, S. (1996) Hybrid Multifluid Algorithms. SIAM Journal on Scientific Computing, 17, 1019-1039. http://dx.doi.org/10.1137/S106482759528003X
|
[26]
|
Quirk, J.J. and Karni, S. (1996) On the Dynamics of a Shock Bubble Interaction. Journal of Fluid Mechanics, 318, 1291-163. http://dx.doi.org/10.1017/S0022112096007069
|
[27]
|
Marquina, A. and Mulet, P. (2002) A Flux-Split Algorithm Applied to Conservative Model for Multicomponent Compressible Flows. GrAN Report 02-01.
|
[28]
|
Xu, K. (1997) BGK-Based Scheme for Multicomponent Flow Calculations. Journal of Computational Physics, 134, 122-133.
http://dx.doi.org/10.1006/jcph.1997.5677
|
[29]
|
Lian, Y. and Xu, K. (1999) A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction. ICASE Report No. 99-28.
|
[30]
|
Nessayahu, H. and Tadmor, E. (1990) Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. Journal of Computational Physics, 87, 408-448. http://dx.doi.org/10.1016/0021-9991(90)90260-8
|
[31]
|
Jaing, G.-S. and TadMor, E. (1998) Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM Journal on Scientific Computing, 19, 1892-1917. http://dx.doi.org/10.1137/S106482759631041X
|
[32]
|
Xu, K. (1998) Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability. ICASE Report No. Tr. 99-6.
|
[33]
|
Konigl, A. (1980) Relativistic Gasdynamics in Two Dimensions. Physics of Fluids, 23, 1083-1090. http://dx.doi.org/10.1063/1.863110
|
[34]
|
Aloy, M.A., Ibanez, J.M., Marti, J.M. and Muller, E. (1999) GENESIS: A High-Resolution Code for 3-D Relativistic Hydrodynamics. The Astrophysical Journal Supplement Series, 122, 151-166. http://dx.doi.org/10.1086/313214
|
[35]
|
Hawley, J.F., Smarr, L.L. and Wilson, J.R. (1984) A Numerical Study of Nonspherical Black Hole Accretion. II. Finite Differencing and Code Calibration. The Astrophysical Journal Supplement Series, 55, 211-246. http://dx.doi.org/10.1086/190953
|
[36]
|
Norman, M.L. and Winkler, K.-H.A. (1986) Why Ultrarelativistic Hydrodynamics is Difficult. Astrophysical Radiation Hydrodynamics, 188, 449-475.
|