[1]
|
Mujika, F., Vargas, G., Ibarretxe, J., Gracia, J.D. and Arrese, A. (2012) Influence of the Modification with MWCNT on the Interlaminar Fracture Properties of Long Carbon Fiber Composites. Composites Part B, 43, 1336-1340. http://dx.doi.org/10.1016/j.compositesb.2011.11.020
|
[2]
|
Kousourakis, A., Mouritz, A.P. and Bannister, M.K. (2006) Interlaminar Properties of Polymer Laminates Containing Internal Sensor Cavities. Composite Structures, 75, 610-618. http://dx.doi.org/10.1016/j.compstruct.2006.04.086
|
[3]
|
Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y. and Fukunaga, H. (2009) Improvement of Interlaminar Mechanical Properties of CFRP Laminates Using VGCF. Composites Part A, 40, 12, 2004-2012. http://dx.doi.org/10.1016/j.compositesa.2009.09.002
|
[4]
|
Luo, G.M. and Lee, Y.J. (2011) Quasi-Static Simulation of Constrained Layered Damped Laminated Curvature Shells Subjected to Low-Velocity Impact. Composites Part B, 42, 1233-1243. http://dx.doi.org/10.1016/j.compositesb.2011.02.012
|
[5]
|
Luo, G.M. (2012) Estimate of CLD Increase Laminated Plate and Shell Low-Velocity Impact Strength. World Journal of Engineering, 9, 319-330. http://dx.doi.org/10.1260/1708-5284.9.4.319
|
[6]
|
Kere, P. and Koski, J. (2001) Multicriterion Stacking Sequence Optimization Scheme for Composite Laminates Subjected to Multiple Loading Conditions. Composite Structures, 54, 225-229. http://dx.doi.org/10.1016/S0263-8223(01)00092-7
|
[7]
|
Rama Mohan Rao, A. and Arvind N. (2005) A Scatter Search Algorithm for Stacking Sequence Optimization of Laminate Composites. Composite Structures, 70, 383-402. http://dx.doi.org/10.1016/j.compstruct.2004.09.031
|
[8]
|
Matsuzaki, R. and Todoroki, A. (2007) Stacking-Sequence Optimization Using Fractal Branch-and-Bound Method for Unsymmetrical Laminates. Composite Structures, 78, 537-550. http://dx.doi.org/10.1016/j.compstruct.2005.11.015
|
[9]
|
Aymerich, F. and Serra, M. (2008) Optimization of Laminate Stacking Sequence for Maximum Buckling Load Using the Ant Colony Optimization (ACO) Metaheuristic. Composites: Part A, 39, 262-272. http://dx.doi.org/10.1016/j.compositesa.2007.10.011
|
[10]
|
Nagendra, S., Haftka, R.T. and Gurdal, Z. (1992) Stacking Sequence Optimization of Simply Supported Laminates with Stability and Strain Constraints. AIAA Journal, 30, 2132-2137. http://dx.doi.org/10.2514/3.11191
|
[11]
|
Rahul, Sandeep, G., Chakraborty, D. and Dutta, A. (2006) Multi-Objective Optimization of Hybrid Laminates Subjected to Transverse Impact. Composite Structures, 73, 360-369. http://dx.doi.org/10.1016/j.compstruct.2005.02.008
|
[12]
|
António, C. (2006) A Hierarchical Genetic Algorithm with Age Structure for Multimodal Optimal Design of Hybrid Composites. Structure Multidisc Optimization, 31, 280-294. http://dx.doi.org/10.1007/s00158-005-0570-9
|
[13]
|
Azarafza, R., Khalili, S.M.R., Jafari, A.A. and Davarb, A. (2009) Analysis and Optimization of Laminated Composite Circular Cylindrical Shell Subjected to Compressive Axial and Transverse Transient Dynamic Loads. Thin-Walled Structures, 47, 970-983. http://dx.doi.org/10.1016/j.tws.2009.01.004
|
[14]
|
Honda, S. and Narita, Y. (2011) Vibration Design of Laminated Fibrous Composite Plates with Local Anisotropy Induced by Short Fibers and Curvilinear Fibers. Composite Structures, 93, 902-910. http://dx.doi.org/10.1016/j.compstruct.2010.07.003
|
[15]
|
Lee, Y.J. and Huang, C.H. (2003) Ultimate Strength and Failure Process of Composite Laminated Plates Subjected to Low-Velocity Impact. Reinforced Plastics and Composite, 22, 1059-1081. http://dx.doi.org/10.1177/0731684403027285
|
[16]
|
Luo, G.M. and Lee, Y.J. (2009) Simulation of Constrained Layered Damped Laminated Plates Subjected to Low-Velocity Impact Using a Quasi-Static Method. Composite Structures, 88, 290-295. http://dx.doi.org/10.1016/j.compstruct.2008.04.009
|