Minimal Repair Redundancy for Coherent Systemin its Signatures Representation

.
DOI: 10.4236/ajor.2011.11002   PDF   HTML     5,502 Downloads   9,712 Views   Citations

Abstract

In this paper we discuss how to maintain the signature representation of a coherent system through a minimal repair redundancy. In a martingale framework we use compensator transforms to identify how the components minimal repairs affect the order statistics in the signature representation.

Share and Cite:

V. Bueno, "Minimal Repair Redundancy for Coherent Systemin its Signatures Representation," American Journal of Operations Research, Vol. 1 No. 1, 2011, pp. 8-15. doi: 10.4236/ajor.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Arjas, E. and Yashin, A. (1988). A note on randonm intensities and conditional survivalfunctions. Journal of Applied probability. 25, 630 - 635.doi:10.2307/3213991
[2] Aven, T. and Jensen, U. (1999). Stochastic Models ineliability. Springer Verlag, New York. doi:10.1007/b97596
[3] Barlow and Proschan,F. (1981). Statistical Theory of Reliability and Life Testing: Probability models. Hold, Reinhart and Wiston , Inc. Silver Spring, MD.
[4] Bremaud ,P. (1981). Point Processes and Queues: Martingale Dynamics.Springer-Verlag, New York.
[5] Bueno, V.C. (2005). Minimal standby redundancy allocation in a K-out-of-n:F systemof dependent components. European Journal of Operation Research. 165, 786-793.doi:10.1016/j.ejor.2003.01.004
[6] Bueno, V.C. (2010). Dynamics signature of a coherent system. Submited.S~ao PauloUniversity, S~ao Paulo, Brazil.
[7] Kochar, S., Mukherjee, H., Samaniego, F.(1999). The signature of a coherent systemand its application to comparisons among systems. Naval Research Logistic. 46, 507 - 523.doi:10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D
[8] Navarro, J., Balakrishnan, N. and Samaniego, F.J. (2008). Mixture representation ofresidual lifetimes of used systems. Journal of Applied Probability. 45, 1097 -1112.doi:10.1239/jap/1231340236
[9] Norros, I. (1986). A compensator representation of multivariate life length distributions, with applications. Scand. J. Statist. 13, 99-112.
[10] Samaniego, F. (1985). On closure of the IFR class under formation of coherent systems. IEEE Transactions in Reliability. R-34, 69-72.doi:10.1109/TR.1985.5221935
[11] Samaniego,F.J. (2007). System signatures and their applications in engineering re-liability. International Series in Operation Research and Management Science, Vol 110, Springer, New York.
[12] Samaniego, F.J., Navarro, J. and Balakrishnan, N. (2009). Dynamic signatures andtheir in comparing the reliability of a new and used systems. Naval Research Logistic. 56, 577-596.doi:10.1002/nav.20370
[13] Shaked, M., Suarez-Llorens, A. (2003). On the comparison of reliability experimentsbased on the convolution order. Journal of American Statistical Association. 98, 693-702.doi:10.1198/016214503000000602

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.