Share This Article:

Exogenous Urocortin 1 Alters the Respiratory Exchange Ratio after Administration into the Lateral Septum

Abstract Full-Text HTML XML Download Download as PDF (Size:330KB) PP. 99-104
DOI: 10.4236/jbbs.2014.42013    2,465 Downloads   4,944 Views  

ABSTRACT

Previous reports have suggested that hypothalamic urocortin 1 (Ucn1) exerts inhibitory control on energy metabolism as direct paraventricular nucleus injections dose-dependently decrease the respiratory energy exchange ratio (RER). Other evidence indicates that Ucn1 injections into the lateral septum may alter metabolic function. Consequently, the present study was designed to further characterize the effects of lateral septal Ucn1 signaling on eating and energy metabolism of adult Sprague-Dawley rats. Ucn1 was infused at the onset of the nocturnal cycle at doses of 10 - 100 pmol. In both females and males the peptide elicited a reliable suppression of food intake and significantly lowered RER over a 4 h postinjection period. The decrease in RER is consistent with enhanced lipid oxidation. Overall these findings suggest that, similar to the paraventricular nucleus, the lateral septum is a critical site of action in mediating the effects of Ucn1 on food intake and energy substrate utilization.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Fimmel, L. Dono, M. Yee and P. Currie, "Exogenous Urocortin 1 Alters the Respiratory Exchange Ratio after Administration into the Lateral Septum," Journal of Behavioral and Brain Science, Vol. 4 No. 2, 2014, pp. 99-104. doi: 10.4236/jbbs.2014.42013.

References

[1] R. L. Hauger, V. Risbrough, O. Brauns and F. M. Dautzenberg, “Corticotropin Releasing Factor (CRF) Receptor Signaling in the Central Nervous System: New Molecular Targets,” CNS and Neurological Disorders-Drug Targets, Vol. 5, No. 4, 2006, pp. 453-479.
http://dx.doi.org/10.2174/187152706777950684
[2] L. A. P. Vasconcelos, C. Donaldson, L. V. Sita, C. A. Casatti, C. F. P. Lotfi, L. Wang, M. Cadinouche, L. Frigo, C. Elias, D. Lovejoy and J. Bittencourt, “Urocortin in the Central Nervous System of a Primate (Cebus apella): Sequencing, Immunohistochemical and Hybridization Histochemical Characterization,” Journal of Comparative Neurology, Vol. 463, No. 2, 2003, pp. 157-175.
http://dx.doi.org/10.1002/cne.10742
[3] J. Vaughan, C. Donaldson, J. Bittencourt, M. H. Perrin, K. Lewis, S. Sutton, R. Can, A. V. Turnbull, D. Lovejoy, C. Rivier, J. Rivier, P. E. Sawchenko and W. Vale, “Urocortin, A Mammalian Neuropeptide Related to Fish Urotensin 1 and to Corticotropin-Releasing Factor,” Nature, Vol. 378, No. 6554, 1995, pp. 287-292.
http://dx.doi.org/10.1038/378287a0
[4] L. Yang, P. Tovote, M. Rayner, J. Kockskamper, B. Pieske and J. Spiess, “Corticotropin-Releasing Factor Receptors and Urocortins, Links between the Brain and the Heart,” European Journal of Pharmacology, Vol. 632, No. 1, 2010, pp. 1-6.
http://dx.doi.org/10.1016/j.ejphar.2010.01.027
[5] P. Weihong and A. J. Kastin, “Urocortin and the Brain,” Progress in Neurobiology, Vol. 84, No. 2, 2007, pp. 148-156.
[6] P. J. Currie, L. M. Schuette, S. E. R. Wauson, W. N. Voss and M. J. Angeles, “Activation of Urocortin 1 and Ghrelin Signaling in the Basolateral Amygdala Induces Anxiogenesis,” NeuroReport, Vol. 25, No. 1, 2013, pp. 60s-64s.
[7] A. Neufeld-Cohen, M. M. Tsoory, A. K. Evans, D. Getselter, S. Gil and C. A. Lowry, “A Triple Urocortin Knockout Mouse Model Reveals an Essential Role for Urocortins in Stress Recovery,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 44, 2010, pp. 19020-19025.
http://dx.doi.org/10.1073/pnas.1013761107
[8] A. Skórzewska, A. Bidziński, M. Lehner, D. Turzyńska, A. Sobolewska, A. Wislowska-Stanek, P. Maciejak, J. Szyndler and A. Plaznik, “The Localization of Brain Sites of Anxiogenic-Like Effects of Urocortin-2,” Neuropeptides, Vol. 45, No. 1, 2010, pp. 83-92.
http://dx.doi.org/10.1016/j.npep.2010.11.003
[9] B. Ray, D. L. Gaskins, T. J. Sajdyk, J. P. Spence, S. D. Fitz, A. Shekhar and D. K. Lahiri, “Restraint Stress and Repeated Corticotropin-Releasing Factor Receptor Activation in the Amygdala Both Increase Amyloid-β Precursor Protein and Amyloid-β Peptide but Have Divergent Effects on Brain-Derived Neurotrophic Factor and Pre-Synaptic Proteins in the Prefrontal Cortex of Rats,” Neuroscience, Vol. 184, 2011, pp. 139-150.
http://dx.doi.org/10.1016/j.neuroscience.2011.03.067
[10] C. Hansson, D. Haage, M. Taube, E. Egecioglu, N. Salome and S. L. Dickson, “Central Administration of Ghrelin Alters Emotional Responses in Rats: Behavioural, Electrophysiological, and Molecular Evidence,” Neuroscience, Vol. 180, 2011, pp. 201-211.
http://dx.doi.org/10.1016/j.neuroscience.2011.02.002
[11] D. R. Gehlert, A. Shekhar, S. M. Hipskind, P. A. Zink, S. L. Gackenheimer, J. Shaw, S. D. Fitz and T. J. Sajdyk, “Stress and Central Urocortin Increase Anxiety-Like Behavior in the Social Interaction Test Via the CRF1 Receptor,” European Journal of Pharmacology, Vol. 509, No. 2, 2005, pp. 145-153.
http://dx.doi.org/10.1016/j.ejphar.2004.12.030
[12] L. M. Dono and P. J. Currie, “The Cannabinoid Receptor CB1 Inverse Agonist AM251 Potentiates the Anxiogenic Activity of Urocortin 1 in the Basolateral Amygdala,” Neuropharmacology, Vol. 62, No. 1, 2012, pp. 192-199.
http://dx.doi.org/10.1016/j.neuropharm.2011.06.019
[13] Y. Zhao, G. R. Valdez, é. M. Fekete, J. E. Rivier, W. W. Vale, K. C. Rice, F. Weiss and E. P. Zorrilla, “Subtype-Selective Corticotropin-Releasing Factor Receptor Agonists Exert Contrasting, but Not Opposite, Effects on Anxiety-Related Behavior in Rats,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 348, No. 3, 2007, pp. 846-854.
http://dx.doi.org/10.1124/jpet.107.123208
[14] Z. Bagosi, K. Csabafi, M. Palotai, M. Jászberényi, I. Földesi, J. Gardi, G. Szabó and G. Telegdy, “The Interaction of Urocortin II and Urocortin III with Amygdalar and Hypothalamic Corticotropin-Releasing Factor (CRF)— Reflections on the Regulation of the Hypothalamic-Pituitary-Adrenal (HPA) Axis,” Neuropeptides, Vol. 47, No. 5, 2013, pp. 333-338.
http://dx.doi.org/10.1016/j.npep.2013.07.001
[15] P. J. Currie, C. D. Coiro, R. Duenas, J. L. Guss, A. Mirza and N. Tal, “Urocortin I Inhibits the Effects of Ghrelin and Neuropeptide Y on Feeding and Energy Substrate Utilization,” Brain Research, Vol. 1385, 2011, pp. 127-134.
http://dx.doi.org/10.1016/j.brainres.2011.01.114
[16] P. J. Currie, D. V. Coscina, C. Bishop, C. D. Coiro, G. F. Koob, J. Rivier and W. Vale, “Hypothalamic Paraventricular Nucleus Injections of Urocortin Alter Food Intake and Respiratory Quotient,” Brain Research, Vol. 916, No. 1, 2001, pp. 222-228.
http://dx.doi.org/10.1016/S0006-8993(01)02851-7
[17] C. Wang, M. A. Mullet, M. J. Glass, C. J. Billington, A. S. Levine and C. M. Kotz, “Feeding Inhibition by Urocortin in the Rat Hypothalamic Paraventricular Nucleus,” The American Journal of Physiology—Regulatory, Integrative, and Comparative Physiology, Vol. 280, No. 2, 2011, pp. R473-R480.
[18] P. J. Currie, “Integration of Hypothalamic Feeding and Metabolic Signals: Focus on Neuropeptide Y,” Appetite, Vol. 41, No. 3, 2003, pp. 335-337.
http://dx.doi.org/10.1016/j.appet.2003.08.011
[19] A. Fatima, S. Andrabi, G. Wolf, M. Engelmann and M. G. Spina, “Urocortin 1 Administered into the Hypothalamic Supraoptic Nucleus Inhibits Food Intake in Freely Fed and Food-Deprived Rats,” Amino Acids, Vol. 44, No. 3, 2013, pp. 879-885.
http://dx.doi.org/10.1007/s00726-012-1415-7
[20] C. D. Chapman, L. M. Dono, M. C. French, Z. Y. Weinberg, L. M. Schuette and P. J. Currie, “Paraventricular Nucleus Anandamide Alters Eating and Substrate Oxidation,” NeuroReport, Vol. 23, No. 7, 2012, pp. 425-429.
[21] J. Maniam and M. J. Morris, “The Link between Stress and Feeding Behavior,” Neuropharmacology, Vol. 63, No. 1, 2012, pp. 97-110.
http://dx.doi.org/10.1016/j.neuropharm.2012.04.017
[22] P. J. Currie, R. Khelemsky, E. M. Rigsbee, L. M. Dono, C. D. Coiro, C. D. Chapman and K. Hinchcliff, “Ghrelin Is an Orexigenic Peptide and Elicits Anxiety-Like Behaviors Following Administration into Discrete Regions of the Hypothalamus,” Behavioral Brain Research, Vol. 226, No. 1, 2012, pp. 96-105.
http://dx.doi.org/10.1016/j.bbr.2011.08.037
[23] A. Z. Weitemier and A. E. Ryabinin, “Urocortin 1 in the DorsalRaphe Regulates Food and Fluid Consumption but Not Ethanol Preference in C57BL/6J Mice,” Neuroscience, Vol. 137, No. 4, 2006, pp. 1439-1445.
http://dx.doi.org/10.1016/j.neuroscience.2005.10.021
[24] M. J. Figueirdo, A. S. Fabricio, R. R. Machado, M. C. Melo, D. M. Soares and G. E. Souza, “Increase of Core Temperature Induced by Corticotropin-Releasing Factor and Urocortin: A Comparative Study,” Regulatory Peptides, Vol. 165, No. 2, 2010, pp. 191-199.
http://dx.doi.org/10.1016/j.regpep.2010.07.167
[25] L. Wang, V. Martinez, J. Rivier and Y. Tache, “Peripheral Urocortin Inhibits Gastric Emptying and Food Intake in Mice: Differential Role of CRF Receptor 2,” American Journal of Physiology—Regulatory, Integrative, and Comparative Physiology, Vol. 281, No. 5, 2001, pp. 1401-1410.
[26] C. Wang and C. M. Kotz, “Urocortin in the Lateral Septal Area Modulates Feeding Induced by Orexin A in the Lateral Hypothalamus,” American Journal of Physiology, Vol. 2832, No. 2, 2002, pp. R358-R367.
[27] G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates,” Academic Press, New York, 2007.
[28] A. V. da Silva, K. R. Torres, C. A. Haemmerle, I. C. Céspedes and J. C. Bittencourt, “The Edinger-Westphal Nucleus II: Hypothalamic Afferents in the Rat,” Journal of Chemical Neuroanatomy, Vol. 54, 2013, pp. 5-19.
http://dx.doi.org/10.1016/j.jchemneu.2013.04.001
[29] E. M. Fekete and E. P. Zorrilla, “Physiology, Pharmacology, and Therapeutic Relevance of Urocortins in Mammals: Ancient CRF Paralogs,” Frontiers in Neuroendocrinology, Vol. 28, No. 1, 2006, pp. 1-27.
http://dx.doi.org/10.1016/j.yfrne.2006.09.002
[30] B. K. Bachtell, A. Z. Weitemier, A. Galvan-Rosas, N. O. Tsivkovskaia, F. O. Risinger, T. J. Philips, N. J. Grahame and A. E. Ryabinin, “The Edinger-Westphal-Lateral Septum Urocortin Pathway and Its Relationship to Alcohol Consumption,” Journal of Neuroscience, Vol. 23, No. 6, 2003, pp. 2477-2487.
[31] T. Kozicz, L. Sterrenburg and L. Xu, “Does Midbrain Urocortin Matter? A 15-Year Journey from Stress (Mal)Adaptation to Energy Metabolism,” Stress, Vol. 14, No. 4, 2011, pp. 376-383.
[32] T. L. Emmerzaal, R. H. Doelen, E. W. Roubos and T. Kozicz, “Orexinergic Innervation of Urocortin1 and Cocaine and Amphetamine Regulated Transcript Neurons in the Midbrain Centrally Projecting Edinger-Westphal Nucleus,” Journal of Chemical Neuroanatomy, Vol. 54, 2013, pp. 34-41.
http://dx.doi.org/10.1016/j.jchemneu.2013.07.004
[33] Y. Harada, K. Takayama, S. Ro, M. Ochiai, M. Noguchi, S. Iizuka, T. Hattori and K. Yakabi, “Urocortin1-Induced Anorexia Is Regulated by Activation of the Serotonin 2C Receptor in the Brain,” Peptides, Vol. 51, 2013, pp. 139-144.
http://dx.doi.org/10.1016/j.peptides.2013.11.009
[34] P. J. Currie, C. S. John, M. L. Nicholson, C. D. Chapman and K. E. Loera, “Hypothalamic Paraventricular 5-Hydroxytryptamine Inhibits the Effects of Ghrelin on Eating and Energy Substrate Utilization,” Pharmacology, Biochemistry & Behavior, Vol. 97, No. 1, 2010, pp. 152-155.
http://dx.doi.org/10.1016/j.pbb.2010.05.027
[35] P. J. Currie, C. D. Coiro, T. Niyomchai, A. Lira and F. Farahmand, “Hypothalamic Paraventricular 5-Hydroxytryptamine: Receptor Specific Inhibition of NPY-Stimulated Eating and Energy Metabolism,” Pharmacology, Biochemistry & Behavior, Vol. 71, No. 4, 2002, pp. 709-716.
http://dx.doi.org/10.1016/S0091-3057(01)00671-2
[36] P. J. Currie, A. Mirza, R. Fuld, D. Park and J. R. Vasselli, “Ghrelin Is an Orexigenic and Metabolic Signaling Peptide in the Arcuate and Paraventricular Nuclei,” American Journal of Physiology, Vol. 289, No. 2, 2005, pp. R353-R358.
[37] A. I. Fimmel, S. L. Heichman, L. C. S. Cepko, J. A. Selva, E. M. Merfeld, S. A. Goldberg and P. J. Currie, “Low Dose Ghrelin Potentiates Psychostimulant-Induced Ethanol Intake,” Program No.775.10, Neuroscience Meeting Planner, Society for Neuroscience, San Diego, 2013.
[38] I. Fonareva, E. Spangler, N. Cannella, V. Sabino, P. Cottone, R. Ciccocioppo, E. P. Zorrilla and A. E. Ryabinin, “Increased Perioculomotor Urocortin 1 Immunoreactivity in Genetically Selected Alcohol Preferring Rats,” Alcoholism: Clinical and Experimental Research, Vol. 33, No. 11, 2009, pp. 1956-1965.
http://dx.doi.org/10.1111/j.1530-0277.2009.01033.x
[39] V. F. Turek, N. O. Tsivkovskaia, P. Hyytia, S. Harding, A. D. Le and A. E. Ryabinin, “Urocortin 1 Expression in Five Pairs of Rat Lines Selectively Bred for Differences in Alcohol Drinking,” Psychopharmacology, Vol. 181, No. 3, 2005, pp. 511-517.
http://dx.doi.org/10.1007/s00213-005-0011-x
[40] W. J. Giardino, D. L. Cocking, S. Kaur, C. L. Cunningham and A. E. Ryabinin, “Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference,” PLoS One, Vol. 6, No. 10, 2011, Article ID: e26997.
http://dx.doi.org/10.1371/journal.pone.0026997
[41] L. M. Schuette, C. C. Gray and P. J. Currie, “Microinjection of Ghrelin into the Ventral Tegmental Area Potentiates Cocaine-Induced Conditioned Place Preference,” Journal of Behavioral and Brain Science, Vol. 3, No. 8, 2013, pp. 576-580.
http://dx.doi.org/10.4236/jbbs.2013.38060
[42] A. E. Ryabinin, D. L. Cocking and S. Kaur, “Inhibition of VTA Neurons Activating the Centrally Projecting Edinger-Westphal Nucleus: Evidence of a Stress-Reward Link?” Journal of Chemical Neuroanatomy, Vol. 54, 2013, pp. 57-61. http://dx.doi.org/10.1016/j.jchemneu.2013.05.004
[43] C. Tanaka, A. Asakawa, M. Ushikai, T. Sakoguchi, H. Amitani, H. Amitani, M. Terashi, K. Cheng, H. Chaolu, N. Nakamura and A. Inui, “Comparison of the Anorexigenic Activity of CRF Family Peptides,” Biochemical and Biophysical Research Communications, Vol. 390, No. 3, 2009, pp. 887-891.
http://dx.doi.org/10.1016/j.bbrc.2009.10.069
[44] W. Pan and A. J. Kastin, “Urocortin and the Brain,” Progress in Neurobiology, Vol. 84, No. 2, 2008, pp. 148-156.
http://dx.doi.org/10.1016/j.pneurobio.2007.10.008
[45] D. S. Latchman, “Urocortin,” International Journal of Biochemistry, Vol. 348, No. 8, 2002, pp. 907-910.
http://dx.doi.org/10.1016/S1357-2725(02)00011-0

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.