A Novel Decoding Method for Non-Binary TCM Codes


A new non-binary decoding method, which is called Yaletharatalhussein decoding algorithm, is designed and implemented for decoding non-binary convolutional codes which is based on the trellis diagram representing the convolutional encoder. Yaletharatalhussein decoding algorithm outperforms the Viterbi algorithm and other algorithms in its simplicity, very small computational complexity, decoding reliability for high states TCM codes that suitable for Fourth-Generation (4G), decreasing errors with increasing word length, and easy to implement with real-time applications. The proposed Yaletharatalhussein decoding algorithm deals with non-binary error control coding of the convolutional and TCM codes. Convolutional codes differ from block codes in that a block code takes a fixed message length and encodes it, whereas a convolutional code can encode a continuous stream of data, and a hard-decision decoding can easily be realized using the Yaletharatalhussein algorithm. The idea of non-binary codes has been extended for symbols defined over rings of integers, which outperform binary codes with only a small increase in decoding complexity. The simulation results show that the performance of the nonbinary TCM-based Yaletharatalhussein algorithm outperforms the binary and non-binary decoding methods.

Share and Cite:

R. Al-Hilali, A. Abdallah and R. Thaher, "A Novel Decoding Method for Non-Binary TCM Codes," Communications and Network, Vol. 6 No. 1, 2014, pp. 22-28. doi: 10.4236/cn.2014.61004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. O. Damen, A. Chkeif and J.-C. Belfiore, “Lattice Code Decoder for Space-Time Codes,” IEEE Communications Letters, Vol. 4, No. 5, 2000, pp. 161-163.
[2] M. O. Damen, H. E. Gamal and G. Caier, “On MaximumLikelihood Detection and the Search for Closest Lattice Point,” IEEE Transactions on Information Theory, Vol. 49, No. 10, 2003, pp. 2389-2402.
[3] B. Hochwald and S. ten Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel,” IEEE Transactions on Communications, Vol. 51, No. 3, 2003, pp. 389-399.
[4] D. Pham, K. R. Pattipati, P. K. Willett and J. Luo, “An Improved Complex Sphere Decoder for V-BLAST Systems,” IEEE Signal Processing Letters, Vol. 11, No. 9, 2004, pp. 748-751.
[5] R. Carrasco, F. Lopez and P. Farrell, “Ring-TCM for M-PSK Modulation: AWGN Channels and DSP Implementation,” IEE Proceedings of Communications, Vol. 143, No. 5, 1996, pp. 273-280.
[6] E. H. Connel, “Elements of Abstract and Linear Algebra,” Coral Gables, Florida, 2004.
[7] R. A. Carrasco and M. Johnston, “Non-Binary Error Control Coding for Wireless Communications and Data Storage,” John Wiley & Sons, Ltd., UK, 2009.
[8] S. Ortiz, “4G Wireless Begins to Take Shape,” Computer, Vol. 40, No. 11, 2007, pp. 18-21.
[9] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding and Decoding: Turbo Codes,” IEEE Transactions on Communications, Vol. 44, No. 10, 1996, pp. 1261-1271.
[10] R. Gallager, “Low Density Parity Check Codes,” IEEE Transactions on Information Theory, Vol. 8, No. 1, 1962, pp. 21-28. http://dx.doi.org/10.1109/TIT.1962.1057683
[11] D. J. C. Mackay and R. M. Neal, “Near Shannon Limit Performance of Low Density Parity Check Codes,” Electronics Letters, Vol. 33, No. 6, 1997, pp. 457-458.
[12] B. Lu, X. Wang and K. R. Narayanan, “LDPC-Based Space-Time Coded OFDM Systems over Correlated Fading Channels: Performance Analysis and Receiver Design,” Proceedings of the 2001 IEEE International Symposium on Information Theory, Washington DC, Vol. 1, 24-29 June 2001, p. 313.
[13] “Using MIMO-OFDM Technology to Boost Wireless LAN Performance Today,” White Paper, Datacomm Research Company, St Louis, 2005.
[14] H. Sampath, S. Talwar, J. Tellado, V. Erceg and A. J. Paulraj, “A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design, Performance, and Field Trial Results,” IEEE Communications Magazine, Vol. 40, No. 9, 2002, pp. 143-149.
[15] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate,” IEEE Transactions on Information Theory, Vol. 20, No. 2, 1974, pp. 284-287.
[16] L. Hanzo, T. H. Liew and B. L. Yeap, “Turbo Coding, Turbo Equalisation and Space-Time Coding,” IEEE Press and John Wiley & Sons, Ltd, Chichester, 2002.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.