Synergic Effect of Mucuna pruriens var. Utilis (Fabaceae) and Pontoscolex corethrurus (Oligochaeta, Glossoscolecidae) on the Growth of Quercus insignis (Fagaceae) Seedlings, a Native Species of the Mexican Cloud Forest


Propagation of native species in local nurseries is an important activity in reforestation and forest restoration programs. A requisite for successful plantation is that nursery produced plants are of a size and quality that allows optimal establishment under field conditions. Manipulation of edaphic processes through the combined use of the earthworm Pontoscolex corethrurus, Mucuna pruriens and inorganic fertilizers may promote faster biomass gain. This study assessed the activity of P. corethrurus, its association with M. pruriens (green manure) and inorganic fertilizers, on the growth of Quercus insignis seedlings under greenhouse conditions. Measured variables were basal diameter, height, biomass and foliar nitrogen content. Growth rates of basal diameter (F = 5.33; P < 0.0001) and height (F = 2.84; P < 0.0087) were significantly greater in the treatment of P. corethrurus-M. pruriens-inorganic fertilizer, relative to the control. Also, leaf biomass and total biomass of the seedlings were greater in the treatment of P. corethrurus-fertilizer (F = 2.32; P < 0.0290, F = 3.71; P < 0.0011, respectively) compared to the control treatment. Foliar nitrogen content


Nursery; Oak Seedlings; Earthworms; Green Manure; Inorganic Fertilizers; Plant Propagation

Share and Cite:

Avendaño-Yáñez, M. , Ortiz-Ceballos, Á. , Sánchez-Velásquez, L. , Pineda-López, M. & Meave, J. (2014). Synergic Effect of Mucuna pruriens var. Utilis (Fabaceae) and Pontoscolex corethrurus (Oligochaeta, Glossoscolecidae) on the Growth of Quercus insignis (Fagaceae) Seedlings, a Native Species of the Mexican Cloud Forest. Open Journal of Forestry, 4, 1-7. doi: 10.4236/ojf.2014.41001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Arriaga, V., Cervantes, V., & Vargas-Mena, A. (1994). Manual de reforestación con especies nativas. México: Instituto Nacional de Ecología, Secretaría de Desarrollo Social and Universidad Nacional Autónoma de México.
[2] Barois, I., Lavelle, P., Brossard, M., Tondoh, J., Mártinez, M. A., Rossi, J. P., Senapati, B. K., Angeles, A., Fragoso, C., Jiménez, J. J., Decaens, T., Lattaud, C., Kanyonyo, J., Blanchart, E., Chapuis, L., Brown, G. G., & Moreno, A. (1999). Ecology of earthworm species with large environmental tolerance and/or extended distributions. In: P. Lavelle, L. Brussard, & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems (pp. 57-85). Wallingford, UK: CABI.
[3] Becker, M., Ladha, J. K., & Ali, M. (1995). Green manure technology: Potential, usage and limitations. A case study for lowland rice. Plant Soil, 174, 181-194.
[4] Benítez, G., Equihua, M., & Pulido-Salas, M. T. (2002). Diagnóstico de la situación de los viveros oficiales de Veracruz y su papel para apoyar programas de reforestación y restauración. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 8, 5-12.
[5] Bhadauria, T., & Saxena, K. G. (2010). Role of earthworms in soil fertility maintenance through the production of biogenic structures. Applied and Environmental Soil Science, 2010, Article ID: 816073.
[6] Blanchart, E., Villenave, C., Viallatoux, A., Barthes, B., Girardin, C., Azontonde, A., & Feller, C. (2006). Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. European Journal of Soil Biology, 42, 136-144.
[7] Bohlen, P. J., Edwards, C.A., Zhang, Q., Parmelee, R. W., & Allen, M. (2002). Indirect effects of earthworms on microbial assimilation of labile carbon. Applied Soil Ecology, 20, 255-261.
[8] Bohlen, P. J., Parmelee, R. W., & Blair, J. M. (2004). Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales. In: C. A. Edwards (Ed.), Earthworm ecology (pp. 161-180). Boca Raton, FL: CRC Press.
[9] Brown, G. G., Pashanasi, B., Villenave, C., Patron, J. C., Senapati, B. K., Giri, S,, Barois, I., Lavelle, P., Blanchart, E., Blakemore, R. J., Spain, A. V., & Boyer, J. (1999). Effects of earthworms on plant production in the tropics. In: P. Lavelle, L. Brussard, & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems (pp. 87-137). Wallingford, UK: CABI.
[10] Brown, G. G., Edwards, C. A., & Brussaard, L. (2004). How earthworms affect plant growth: burrowing into the mechanisms. In: C. A. Edwards (Ed.), Earthworm ecology (pp. 13-49). Boca Raton, FL: CRC Press.
[11] Buch, A. C., Brown, G. G., Niva, C. C., Sautterc, K. D., & Lourenc, L. F. (2011). Life cycle of Pontoscolex corethrurus (Müller, 1857) in tropical artificial soil. Pedobiologia, 54, S19-S25.
[12] Buckles, D. (1995). Velvetbean: A new plant with a history. Economic Botany, 49, 151-162.
[13] Buckles, D., & Triomphe, B. (1999). Adoption of mucuna in the farming systems of northern Honduras. Agroforestry Systems, 47, 67-91.
[14] Cayuela, L., Golicher, D. J., Benayas, J. M. R., González-Espinosa, M., & Ramírez-Marcial, N. (2006). Fragmentation, disturbance and tree diversity conservation in tropical montane forests. Journal of Applied Ecology, 43, 1172-1181.
[15] Doube, B. M., Williams, P. M. L., & Willmott, P. J. (1997). The influence of two species of earthworm (Aporrectodea trapezoids and Aporrectoedea rosea) on the growth of wheat, barley and faba beans in three soil types in the greenhouse. Soil Biology and Biochemistry, 29, 503-509.
[16] Edwards, C. A., & Bater, J. E. (1992). The use of earthworms in environmental management. Soil Biology and Biochemistry, 24, 16831689.
[17] Edwards, C. A., & Bohlen, P. (1996). Biology and ecology of earthworms. New York: Chapman and Hall.
[18] Eisenhauer, N., Milcu, A., Sabais, A. C. W., & Scheu, S. (2009). Earthworms enhance plant regrowth in a grassland plant diversity gradient. European Journal of Soil Biology, 45, 455-458.
[19] Eilitta, M., Sollenberger, L. E., Littell, R. C., & Harrington, L. W. (2003). On-farm experiments with maize-mucuna systems in the Los Tuxtlas region of Veracruz, Mexico. I. Mucuna biomass and maize grain yield. Experimental Agriculture, 39, 5-17.
[20] Fragoso, C., Kanyonyo, J., Moreno, A., Senapati, B., Blanchart, E., & Rodríguez, C. (1999). A survey of tropical earthworms: Taxonomy, biogeography and environmental plasticity. In: P. Lavelle, L. Brussard, & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems (pp. 1-26). Wallingford, UK: CABI.
[21] Fragoso, C. (2001). Las lombrices de tierra de México (Annelida, Oligochaeta): Diversidad, ecología y manejo. Acta Zoológica Mexicana, 1, 131-171.
[22] Garnier, E. (1991). Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology & Evolution, 6, 126-131.
[23] Gastal, F., & Lemaire, G. (2002). N uptake and distribution in crops: An agronomical and ecophysiological perspective. Journal of Experimental Botany, 53, 789-799.
[24] Gleeson, S. K. (1993). Optimization of tissue nitrogen and root-shoot allocation. Annals of Botany, 71, 23-31.
[25] González-Espinosa, M., Meave, J. A., Lorea-Hernández, F. G., IbarraManríquez, G., & Newton, A. C. (2011). The red list of Mexican cloud forest trees. Cambridge: Fauna and Flora International (FFI).
[26] Goran, I. A., & Franklin, O. (2003). Root: Shoot ratios, optimization and nitrogen productivity. Annals of Botany, 92, 795-800.
[27] Haimi, J., & Einbork, M. (1992). Effects of endogeic earthworms on soil processes and plant growth in coniferous forest soil. Biology and Fertility of Soils, 13, 6-10.
[28] Hilbert, D. W. (1990). Optimization of plant root: Shoot ratios and internal nitrogen concentration. Annals of Botany, 66, 91-99.
[29] Hikosaka, K. (2004). Interspecific difference in the photosynthesisnitrogen relationship: Patterns, physiological causes, and ecological importance. Journal of Plant Research, 6, 481-494.
[30] Hulugalle, N. R., Lail, R., & Kuile, C. H. H. (1986). Amelioration of soil physical properties by Mucuna after mechanized land clearing of tropical rain forest. Soil Science, 14, 219-224.
[31] Ile, E., Hamadina, M. K., Zufa, K., & Henrot, J. (1996). Note on effects of a Mucuna pruriens var. utilis crop on the growth of maize (Zea mays) on an acid ultisol in southeastern Nigeria. Field Crops Research, 48, 135-140.
[32] Konboon, Y., Blair, G. J., Lefroy, R. D. B., & Whitbread, A. M. (2000). Tracing the nitrogen, sulfur and carbon released from plant residues in a soil/plant system. Australian Journal of Soil Research, 38, 699-710.
[33] Lamb, D., Erskine, P. D., & Parrota, J. A. (2005). Restoration of degraded tropical forests landscapes. Science, 310, 1628-1632.
[34] Laossi, K. P., Ginot, A., Noguera, D. C., Blouin, M., & Barot, S. (2010a). Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant and Soil, 328, 109-118.
[35] Laossi, K. P., Noguera, D. C., & Barot, S. (2010b). Earthworm mediated maternal effects on seed germination and seedling growth in three annual plants. Soil Biology and Biochemistry, 42, 319-323.
[36] Lavelle, P., Barois, I., Cruz, I., Fragoso, C., Hernández, A., Pineda, A., & Rangel, P. (1987). Adaptative strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biology and Fertility of Soils, 5, 188-194.
[37] Lavelle, P., & Pashanasi, B. (1989). Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia, 33, 283-291.
[38] Lee, K. E. (1985). Earthworms: Their ecology and relationships with soils and land use. Sydney: Academic Press.
[39] López-Hernández, D., Lavelle, P., Fardeau, J. C., & Nino, M. (1993). Phosphorus transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae: Oligochaeta). Soil Biology and Biochemistry, 25, 789-792.
[40] Meli, P. (2003). Restauración ecológica de bosques tropicales: Veinte anos de investigación académica. Interciencia, 28, 581-589.
[41] Meza-Sánchez, R., Ruiz-Espinoza, F. H., & Navejas-Jiménez, J. (2009). Guía para la producción de planta y plantación con especies nativas. Baja California Sur: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
[42] Müller, F. (1857). II. Description of a new species of earthworm (Lumbricus corethrurus). Journal of Natural History Series 2, 20, 13-15.
[43] Oldfield, S., & Eastwood, A. (2007). The red list of oaks. Cambridge: Fauna and Flora International (FFI).
[44] Ortiz-Ceballos, A. I., & Fragoso, C. (2004). Earthworm populations under tropical maize cultivation: The effect of mulching with velvetbean. Biology and Fertility of Soils, 39, 438-445.
[45] Ortiz-Ceballos, A. I., Fragoso, C., Equihua, M., & Brown, G. G. (2005). Influence of food quality, soil moisture and the earthworm Pontoscolex corethrurus on the growth, reproduction and activity of a tropical earthworm Balanteodrilus pearsei. Pedobiologia, 49, 89-98.
[46] Ortiz-Ceballos, A. I., Fragoso, C., & Brown, G. G. (2007). Synergistic effect of a tropical earthworm Balanteodrilus pearsei and velvetbean Mucuna pruriens var. utilis on maize growth and crop production. Applied Soil Ecology, 35, 356-362.
[47] Ortiz-Ceballos, A. I., Aguirre-Rivera, J. R., Osorio-Arce, M. M., & Pena-Valdivia, C. (2012). Velvet Bean (Mucuna pruriens var. utilis) a cover crop as Bioherbicide to preserve the environmental services of soil. In: R. Alvarez-Fernandez (Ed.), Herbicides-environmental impact studies and management approaches (pp. 167-184). Cambridge: University of Cambridge.
[48] Pashanasi, B., Meléndez, G., Szott, L., & Lavelle, P. (1992). Effect of inoculation with the endogeic earthworm Pontoscolex corethrurus (Glossoscolecidae) on availability, soil microbial biomass and the growth of three tropical fruit tree seedlings in a pot experiment. Soil Biology and Biochemistry, 24, 1655-1659.
[49] Pedraza, R. A., & Williams-Linera, G. (2003). Evaluation of native tree species for the rehabilitation of deforested areas in a Mexican cloud forest. New Forests, 26, 83-99.
[50] Ramírez-Marcial, N., González-Espinosa, M., & Williams-Linera, G. (2001). Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. Forest Ecology and Management, 154, 311-326.
[51] Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5, 18-32.
[52] Senapati, B. K., Lavelle, P., Giri, S., Pashanasi, B., Alegre, J., Decaens, T., Jimenez, J. J., Albrecht, A., Blanchart, E., Mahieux, M., Rousseaux, L., Thomas, R., Panigrahi, P. K., & Venkatachalam, M. (1999). In-soil earthworm technologies for tropical agroecosystems. In: P. Lavelle, L. Brussaard, & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems (pp. 199-237). Wallingford, UK: CABI.
[53] SAS Institute Inc. (2009). SAS system for windows version 9.2.
[54] SEMARNAT (2002). Nom -021-SEMARNAT-2000 Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis, 2nd Sect. México: Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT).
[55] Scheu, S. (2003). Effects of earthworms on plant growth: Patterns and perspectives. Pedobiologia, 47, 846-856.
[56] Smyth, T. J., Cravo, M. S., & Melgar, R. J. (1991). Nitrogen supplied to corn by legumes in a Central Amazon Oxisol. Tropical Agriculture (Trinidad), 68, 366-372.
[57] Valencia, A. S. (2004). Diversidad del género Quercus (Fagaceae) en México. Boletin de la Sociedad Botanica de México, 75, 33-53.
[58] Vázquez-Yanes, C., & Cervantes, V. (1993). Reforestación con árboles nativos de México. Ciencia y Desarrollo, 19, 52-58.
[59] Villasenor, J. L. (2010). El bosque húmedo de montana en México y sus plantas vasculares: Catálogo florístico-taxonómico. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)—Universidad Nacional Autónoma de México (UNAM).
[60] Wardle, D. A. (2002). Communities and ecosystems: Linking aboveground and belowground components. Princeton, NJ: Princeton University Press.
[61] Wardle, D. A., Bardgett, R. D., Kironomos, J. N., Setala, H., Van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
[62] Wurst, S., & Jones, T. H. (2003). Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia, 47, 91-97.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.