Thermal dependence of the properties of cubic boron nitride crystal

DOI: 10.4236/ns.2011.32022   PDF   HTML     4,859 Downloads   9,889 Views   Citations


Lattice constant, total energy, cohesive energy, bulk modulus, speed of sound (υ), plasmon energy (Epl), valence charge distribution and energy bands of cubic boron nitride crystal have been calculated and studied as a function of temperature using self-consistent field tight binding method with complete neglect of differential overlap version 2 using 8-atom large unit cell approach. Our results illustrate that the increase of temperature leads to an increase of lattice constant, cohesive energy, and valence charge distribution at the atoms, whereas a decrease is obtained for bulk modulus, energy band widths, valence charge distribution in the intratomic distance, speed of sound, and the plasmon energy. The comparison with experimental and other theoretical results has showed an excellent agreement for the lattice constant, bulk modulus, cohesive energy, speed of sound, plasmon energy value and the valence band, whereas remarkable differences in charge distribution values, and the band gap are found. These differences are common in the results that depend on this type of calculation. Values for conduction band and speed of sound have not been found for comparison. Our relation for Epl-T fails but the υ-T relation is successful.

Share and Cite:

Mijbil, Z. , Abdulsattar, M. and Abdul-Lettif, A. (2011) Thermal dependence of the properties of cubic boron nitride crystal. Natural Science, 3, 154-164. doi: 10.4236/ns.2011.32022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wentzcovitch, R.M., Chang, K.J. and Cohen, M.L. (1986) Physical Review B, 34, 1071-1079. doi:10.1103/PhysRevB.34.1071
[2] Sun, H., Jhi, S.H., Roundy, D., Cohen, M.L., Louie, S.G. (2001) Physical Review B, 64, 094108/1-6.
[3] Kádas, K., Kern, G. and Hafner, J. (2000) Surface Science, 494-497. doi:10.1016/S0039-6028(00)00254-5
[4] Mattesini, M. and Matar, S.F. (2001) Computational Materials Science, 20, 107-119. doi:10.1016/S0927-0256(00)00132-4
[5] Major, B., Mróz, W., Jelinek, M., Kosydar, R., Kot, M., Major, ?., Burdyńska, S. and Kustosz, R. (2006) Bulletin of the Polish Academy of Sciences: Technical Sciences, 54, pp. 181-188.
[6] Knittle, E., Kaner, R.B. Jeanloz, R. and Cohen, M. L. (1995) Physical Review B, 51, 12149-12156. doi:10.1103/PhysRevB.51.12149
[7] Lambrecht, W.R.L. and Segall, B. (1989) Physical Review B, 40, 9909-9919.
[8] Watanabe, S., Wheeler, D.R., Abel, P.B., Murakawa, M. and Miyake, S. (1998) Surface chemistry, microstructure, and tribological properties of cubic boron nitride films. NASA Lewis Research Center.
[9] M?rlid, B. (2001) Theoretical modling of thin film growth in the B-N system. Acta Universitais.
[10] Zunger, A. and Freeman, A.J. (1978) Physical Review B, 17, 2030-2042. doi:10.1103/PhysRevB.17.2030
[11] Meng, Y., Mao, H., Eng, P.J., Trainor, T.P., Newville, M., Hu, M.Y., Kao, C., Shu, J., Hausermann, D. and Hemley, R. J. (2004) Nature Materials, 3, 111-114. doi:10.1038/nmat1060
[12] Karlsson, J. and Larsson, K. (2010) Journal of Physical Chemistry C, 114, 3516-3521. doi:10.1021/jp907186a
[13] Horiuchi, S., Huang, J.Y., He, L.L., Mao, J.F. (1998) Philosophical Magazine A, 78, 1065-1072. doi:10.1080/01418619808239974
[14] Huang, J.Y. and Zhu, Y.T. (2002) Chemistry of Materials, 14, 1873-1878. doi:10.1021/cm0109645
[15] Hang-Sheng, Y., Fa-Min, Q. and An-Min, N. (2010) Journal of Inorganic Materials, 25, 748-752. doi:10.3724/SP.J.1077.2010.00748
[16] Khavryuchenko, O.V., Alekseev, S.A., Beobide, A.S., Kandilioti, G., Voyiatzis, G.A., Lisnyak, V.V. (2010) The Journal of Physical Chemistry C, 114, 1102-1109. doi:10.1021/jp908711x
[17] Zhao, Y. and Wang, M. (2009) Journal of Materials Processing Technology, 209, 355-359. doi:10.1016/j.jmatprotec.2008.02.005
[18] Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L., Rigal, J.F., (2009) Journal of Materials Processing Technology, 209, 1092-1104. doi:10.1016/j.jmatprotec.2008.03.014
[19] Wentorf, R.H., Jr. (1962) Journal of Chemical Physics, 34, 809-812. doi:10.1063/1.1731679
[20] Harker, A.H. and Larkins, F.P. (1979) Journal of Physics C: Solid State Physics, 12, 2487-2495. doi:10.1088/0022-3719/12/13/013
[21] Pople, J.A. and Beveridge, D.L. (1970) Approximate molecular orbital theory. McGraw-Hill.
[22] Harker, A.H. and Larkins, F.P. (1979) Journal of Physics C: Solid State Physics, 12, 2497-2507. doi:10.1088/0022-3719/12/13/014
[23] Freund, H. and Hohlneicher, G. (1979) Theoretica chimica acta, 51, 145-162. doi:10.1007/BF00554098
[24] Schmid, E. and Brodbe, E. (1985) Canadian Journal of Chemistry, 63, 1365-1371. doi:10.1139/v85-233
[25] Vogl, P., Hjalmarsons, H.P. and Dow, J.d. (1983) Journal of Physics and Chemistry of Solids, 44, 365-378. doi:10.1016/0022-3697(83)90064-1
[26] Slater, J.C. and Koster, G.F. (1954) Physical Review, 94, 1498-1529. doi:10.1103/PhysRev.94.1498
[27] Pople, J.A. Santry, D.P. and Segal, G.A. (1965) Journal of Chemical Physics, 43, 129-S135. doi:10.1063/1.1701475
[28] Bredow, T., Evarestov, R.A. and Jug, K. (2000) Physica Status Solidi B, 222, 495-514. doi:10.1002/1521-3951(200011)222:2<495::AID-PSSB495>3.0.CO;2-5
[29] Rogan, J. and Lagos, M. (2001) Philosophical Magazine B, 81, 551-559. doi:10.1080/13642810108225450
[30] Chadi, D.J. and Cohen, M.L. (1973) Physical Review B, 8, 5747-5753. doi:10.1103/PhysRevB.8.5747
[31] Janesko, B.G. and Yaron, D. (2004) Journal of Chemical Physics, 121, 5635-5645. doi:10.1063/1.1785771
[32] Daudal, R., Leroy, G., Peeters, D. and Sana, M. (1983) Quantum chemistry. John Wiley and Sons.
[33] Hassan, I.Z. (2001) Semiempirical self-consistent field calculations of III-V zinc-blende semiconductors. Ph. D. thesis. University of Al-Nahrain.
[34] Murnaghan, F.D. (1944) Proceedings of the National Academy of Science, 30, 244. doi:10.1073/pnas.30.9.244
[35] Zheng, J.C., Huan, C.H.A., Wee, A.T.S., Wang, R.Z. and Zheng, Y.M. (1999) Journal of Physics: Condensed Matter, 11, 927-935. doi:10.1088/0953-8984/11/3/030
[36] Abdulsattar, M.A. (1997) Self consistent field calculations of covalent semiconductors. Ph.D. Thesis, University of Baghdad.
[37] Allen, C. (1976) Astrophysical quantities. Athlone Press.
[38] Lee, S.H., Kang, J.H. and Kang, M.H.J. (1997) The Korean Physical Society, 31, 811-814.
[39] Omer, M.S. (2007) Materials Research Bulletin, 42, 319-326. doi:10.1016/j.materresbull.2006.05.031
[40] Kumar, V. and Sastry, B.S.R. (2001) Crystal Research and Technology, 36, 565-569. doi:10.1002/1521-4079(200107)36:6<565::AID-CRAT565>3.0.CO;2-F
[41] Lam, P.K., Cohen, M.L. and Martinez, G. (1987) Physical Review B, 35, 9190-9194. doi:10.1103/PhysRevB.35.9190
[42] Ferhat, M., Bouhafs, B., Zaoui, A. and Aourag, H. (1998) Journal of Physics: Condensed Matter, 10, 7995-8006. doi:10.1088/0953-8984/10/36/010
[43] Wang, S.Q. and Ye, H.Q. (2002) Physical Review B, 66, 235111/1-7.
[44] Schlosser, H. and Ferrante, J. (1988) Physical Review B, Condensed Matter, 37, 4351-4357.
[45] Soma, T., Sawaoka, S. and Saito, S. (1974) Materials Research Bulletin, 9, 755. doi:10.1016/0025-5408(74)90110-X
[46] Calzaferri, G. and Rytz, R. (1996) Journal of Physical Chemistry, 100, 11122-11124. doi:10.1021/jp960840t
[47] Levitas, V.I. and Shvedov, L.K. (2002) Physical Review B, 65, 104109/1-6.
[48] Merdan, M.G. (2005) Self-consistent field calculations of the effect of pressure and temperature on some properties of grey tin crystal. Master’s Thesis, Babylon University.
[49] Sekkal, W., Bouhaf, B., Aourag, H. and Certier, M. (1998) Journal of Physics: Condensed Matter, 10, 4975-4984. doi:10.1021/jp960840t
[50] Mujica, A., Rubio, A., Munoz, A. and Need, R.J. (2003) Reviews of Modern Physics, 75, 863. doi:10.1103/RevModPhys.75.863
[51] Jayawardane, D.N., Pickard, C.J., Brown, L.M. and Payne, M.C. (2001) Physical Review B, 64, 11517/1-4.
[52] Reddy, R.R., Ahammed, Y.N., Abdul Azeem, P., Gopal, K.R., Devi, B.S. and Rao, T.V.R. (2003) Defence Science Journal, 53, 239-248.
[53] Murrel, J.N., Kettle, S.F.A. and Tedder, J.M. (1982) The chemical bond. 2nd Edition, Translated to Arabic by M. N. Al-Zakum, University of Basrah.
[54] Ladd, M.F.C. (1983) Structure and bonding in solid state chemistry. Translated to Arabic by I. J. Selomi, University of Mosul.
[55] Adamska, C.M., Sloma, P. and Tomaszeewski, J. (2006) Journal of Physics: Condensed Matter, 18, 751-758. doi:10.1088/0953-8984/18/2/028
[56] Sibona, G.J. Schreiber, S., Hoppe, R.H.W., Strizker, B. and Revńic, A. (2003) Materials Science in Semicon- ductor Processing, 6, 71-76. doi:10.1016/S1369-8001(03)00073-8
[57] Phillips, J.C. (1956) Physical Review, 104, 1263-1277.
[58] Kittel, C. (1996) Introduction to solid state physics. 7th Edition, John Wiley and Sons. doi:10.1103/PhysRev.104.1263
[59] Glazov, V.M. and Shchelikov, O.D. (1998) Semiconduc- tor Equipment and Materials International, 32, 382-384.
[60] Olguín, D., Cantarero, A., Ulrich, C. and Syassen, K. (2003) Physica Status Solidi B, 235, 456-463. doi:10.1002/pssb.200301602
[61] Audronis, M., Valiulis, A.V. and Silickas, P. (2004) Jour- nal of Materials Science, 10, 152-156.
[62] Jiang, J.Z., Lindelov, H., Gerward, L., St?hl, K., Recio, J. M., Mori-Sanchez, P., Carlson, S., Mezouar, M., Dooryhee, E., Fitch, A. and Frost, D.J. (2002) Physical Review B, 65, 161202/1-4.
[63] D’Evelyn, M.P. and Taniguchi, T. (1998) Elastic properties of translucent polycrystalline cubic boron nitride as characterized by the dynamic resonance method. GE Research & Development Center, General Electric Company.
[64] Wang, B.T., Zhang, P., Shi, H.L., Sun, B. and Li, W.D. (2010) The European Physical Journal B, 74, 303-308. doi:10.1140/epjb/e2010-00081-x
[65] Hung, V.V., Jindo, K.M. and Haun, P.T.M. (2006) Journal of Physics: Condensed Matter, 18, 283-293. doi:10.1088/0953-8984/18/1/021
[66] Mijbil, Z.Y. (2011) Journal of Bab. University, 19, Under Publishing.
[67] Garai, J. and Laugier, A. (2007) Journal of Applied Physics, 101, 023514/1-4.
[68] Anderson, O.L. (1966) Physical Review, 144, 553-557. doi:10.1103/PhysRev.144.553
[69] Nandanpawar, M.L. and Rajagopalan, S. (1978) Journal of Applied Physics, 49, 3976-3979. doi:10.1063/1.325408
[70] Wachtman, J.B. Jr., Tefft, W.E., Lam, D.G., Jr., and Apstein, C.S. (1961) Physical Review, 122, 1754-1759. doi:10.1103/PhysRev.122.1754
[71] Sanjurjo, J.A., López-Cruz, E., Vogl, P. and Cardona, M. (1983) Physical Review B, 28, 4579-4584. doi:10.1103/PhysRevB.28.4579
[72] Trommer, R., Müller, H., Cardona, M. and Vogl, P. (1980) Physical Review B, 21, 4869-4878. doi:10.1103/PhysRevB.21.4869
[73] Burstein, E., Perkowitz, S. and Brodsky, M.H. (1968) Journal de Physique, 29, C4/78-83.
[74] Miranda, L.C.M. and Haar, ter D. (1972) Revista Brasileira de Ensino de Física, 2, 77-86.
[75] Molinàs-Mata, P.A., Shields, J. and Cardona, M. (1993) Physical Review B, 47, 1866-1875. doi:10.1103/PhysRevB.47.1866
[76] Raj, G.D. (2004) Solid state physics. 1st Edition, Anmol Pub. Pvt. Ltd..
[77] Xu, C.H., Wang, C.Z., Chan, C.T. and Ho, K.M. (1991) Physical Review B, 43, 5024-5027. doi:10.1103/PhysRevB.43.5024
[78] Kleinman, L. and Phillips, J.C. (1960) Physical Review, 117, 460-464. doi:10.1103/PhysRev.117.460
[79] Yang, D., Su, Z., Du, Y., Ji, X., Yang, X., Gong, X. and Zhang, T. (2006) Chinese Physics Letters, 23, 1324- 1326. doi:10.1088/0256-307X/23/5/072
[80] Dovesi, R., Pisani, C., Roetti, C. and Dellarole, P. (1981) Physical Review B, 24, 4170-4176. doi:10.1103/PhysRevB.24.4170
[81] Chadi, D.J. (1977) Physical Review B, 16, 3572-3578. doi:10.1103/PhysRevB.16.3572
[82] Mori, Y., Ikai, T., Teranishi, R. and Takarabe, K. (2003) Physica Status Solidi B, 235, 302-306. doi:10.1002/pssb.200301573
[83] Kim, K., Lambrecht, W.R.L. and Segall, B. (1996) Physical Review B, 53, 16310-16326. doi:10.1103/PhysRevB.53.16310
[84] Jain, S.C., Willander, M. and Maes, H. (1996) Semiconductor Science and Technology, 11, 641-671. doi:10.1088/0268-1242/11/5/004
[85] Vurgaftmana, I., Meyer, J.R. and Mohan, L.R.R. (2001) Journal of Applied Physics, 89, 5815-5875. doi:10.1063/1.1368156
[86] P?ssler, R. (1999) Physica Status Solidi B, 216, 975-1007. doi:10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N
[87] Olguín, D., Cantarero, A. and Cardona, M. (2000) Physica Status Solidi B, 220, 33-39. doi:10.1002/1521-3951(200007)220:1<33::AID-PSSB33>3.0.CO;2-J
[88] Fan, H.Y. (1951) Physical Review, 82, 900-905. doi:10.1103/PhysRev.82.900
[89] Raczkowski, D., Canning, A. and Wang, L.W. (2001) Physical Review B, 46, 121101/1-4.
[90] Cotton, F.A. and Wilkinson, G. (1976) Basic inorganic chemistry. John Wiley & Sons.
[91] Rose, J., Smith, J.R., Guinea, F. and Ferrante, J. (1984) Physical Review B, 29, 2963-2969. doi:10.1103/PhysRevB.29.2963
[92] Sánchez, P.M., Pendás, A.M. and Lua?a, V. (2002) Journal of the American Chemical Society, 124, 14721- 14723. doi:10.1021/ja027708t
[93] Bouhafs, B., Aourag, H. and Certier, M. (2000) Journal of Physics: Condensed Matter, 12, 5655-5668. doi:10.1088/0953-8984/12/26/312
[94] Wu, R.Q., Peng, G.W., Lui, L. and Feng, Y.P. (2006) Journal of Physics: Condensed Matter, 18, 569-575. doi:10.1088/0953-8984/18/2/015
[95] Al-Jelawy, I.O.R. (2005) Effect of pressure and temperature on some properties of diamond crystal using hartree-fock method. Master Thesis, University of Babylon.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.