所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
ENG> Vol.5 No.10B, October 2013
Share This Article:
Cite This Paper >>

The 3D Computer Image of the Anterior Corneal Surface

Abstract Full-Text HTML Download Download as PDF (Size:262KB) PP. 477-481
DOI: 10.4236/eng.2013.510B098    4,011 Downloads   4,992 Views   Citations
Author(s)    Leave a comment
Bo Wang, Xueping Huang, Jinglu Ying, Mingguang Shi

Affiliation(s)

Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China.
School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing, China.
Wenzhou Medical College, Wenzhou, China.

ABSTRACT

In this paper,we derive a nonlinearequation of corneal asphericity (Q) usingthe tangential radius of curvature (rt) on every semi-meridian. We transform the nonlinear equation into the linear equation and then obtain theQ-value of cor-neal semi-meridianby the linear regression method.We find the 360 semi-meridional variation rule of theQ-value us-ing polynomial function. Furthermore, we construct a new 3D corneal model and present a more realistic model of shape of the anterior corneal surface.

KEYWORDS

Cornea; Computer; Image

Cite this paper

Wang, B. , Huang, X. , Ying, J. and Shi, M. (2013) The 3D Computer Image of the Anterior Corneal Surface. Engineering, 5, 477-481. doi: 10.4236/eng.2013.510B098.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Scholz, A. Messner, T. Eppig, H. Bruenner and A. Langenbucher, “Topography-Based Assessment of Anterior Corneal Curvature and Asphericity as a Function of Age, Sex, and Refractive Status,” Journal of Cataract & Refractive Surgery, Vol. 35, 2009, pp. 1046-1054. http://dx.doi.org/10.1016/j.jcrs.2009.01.019
[2] M. Guillon, D. P. M. Lydon and C. Wilson, “Corneal Topography: A Clinical Model,” Ophthalmic and Physiological Optics, Vol. 6, 1986, pp. 47-56. http://dx.doi.org/10.1111/j.1475-1313.1986.tb00699.x
[3] A. G. Bennett, “Aspherical and Continuous Curve Contact Lenses,” Optometry Today, Vol. 28 ,1988, pp. 11-14, 140-142, 238-242, 433-444.
[4] T. Y. Baker, “Ray Tracing through Non-Spherical Surfaces,” Proceedings of the Physical Society, Vol. 55, 1943, pp. 361-364. http://dx.doi.org/10.1088/0959-5309/55/5/302
[5] S. W. Cheung, P. Cho and W. A. Douthwaite, “Corneal Shape of Hong Kong-Chinese,” Ophthalmic and Physiological Optics, Vol. 2, 2000, pp. 119-125. http://dx.doi.org/10.1016/S0275-5408(99)00045-9
[6] A. G. Bennett and R. B. Rabbetts, “What Radius Does the Conventional Keratometer Measure?” Ophthalmic and Physiological Optics, Vol. 11, 1991, pp. 239-247. http://dx.doi.org/10.1111/j.1475-1313.1991.tb00539.x
[7] J. Schwiegerling and J. E. Greivenkamp, “Using Corneal Height Maps and Polynomial Decomposition to Determine Corneal Aberrations,” Optometry and Vision Science Journal, Vol. 74, 1997, pp. 906-916. http://dx.doi.org/10.1097/00006324-199711000-00024
[8] M. Dubbelman, V. A. D. P. Sicam and G. L. Van der Heijde, “The Shape of the Anterior and Posterior Surface of the Aging Human Cornea,” Vision Research, Vol. 46, 2006, pp. 993-1001. http://dx.doi.org/10.1016/j.visres.2005.09.021
[9] C. Roberts, “Characterization of the Inherent Error in a Spherically-Biased Corneal Topography System in Mapping a Radially Aspheric Surface,” Journal of Cataract & Refractive Surgery, Vol. 10, 1994, pp. 103-111.
[10] C. Roberts, “Analysis of the Inherent Error of the TMS-1 Topographic Modeling System in Mapping a Radially Aspheric Surface,” Cornea, Vol. 14, 1995, pp. 258-265. http://dx.doi.org/10.1097/00003226-199505000-00006
[11] J. S. Chan, R. B. Mandell, D. S. Burger and R. E. Fusaro, “Accuracy of Videokeratography for Instantaneous Radius in Keratoconus,” Optometry and Vision Science Journal, Vol. 72, No. 11, 1995, pp. 793-799. http://dx.doi.org/10.1097/00006324-199511000-00004
[12] L. B. Szczotka and J. Thomas, “Comparison of Axial and Instantaneous Videokeratographic Data in Keratoconus and Utility in Contact Lens Curvature Prediction,” The CLAO Journal, Vol. 24, 1998, pp. 22-28.
[13] R. B. Mandell, C. S. Chiang and S. A. Klein, “Location of the Major Corneal Reference Points,” Optometry and Vision Science Journal, Vol. 72, 1995, pp. 776-784. http://dx.doi.org/10.1097/00006324-199511000-00002
[14] A. Gray, “Modern Differential Geometry of Curves and Surfaces with Mathematica,” 2nd Edition, CRC Press, Boca Raton, 1997.
[15] E. Kreyszig, “Differential Geometry,” Dover, New York, 1991.
[16] J. D. Foley, A. V. Dam, S. K. Feiner and J. F. Hughes, “Computer Graphics: Principles and Practice in C,” 2nd Edition, Addison-Wesley, Boston, 1995.
[17] P. M. Kiely, G. Smith and L. G. Carney, “The Mean Shape of the Human Cornea,” Optica Acta, Vol. 29, 1982, pp. 1027-1040. http://dx.doi.org/10.1080/713820960

  
comments powered by Disqus
ENG Subscription
E-Mail Alert
ENG Most popular papers
Publication Ethics & OA Statement
ENG News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.