Prohibitins, novel vitamin K2 target factors in osteoblast


Vitamin K2 (VK2, menaquinone) is a drug for osteoporosis. VK2 acts as a cofactor for γ-glutamyl carboxylase, which catalyzes the carboxylation of specific glutamic acid residues (γ-carboxylation) of substrate proteins. Here we demonstrate that VK2 also regulate osteoblastgenic marker gene expression. Using VK2-immobilzed nanobeads new target proteins were purified and identified from osteoblastic cell line. They are prohibitin 1 and 2 (PHB1 & 2), respectively. To confirm the PHBs function on VK2-dependent transcription, PHB1 & 2 were knock-down and osteocalcin gene 2 transcriptions were analyzed, indicating that PHBs regulate VK2-dependent transcription. Taken together PHBs are VK2 target proteins for osteoblastgenic transcription.

Share and Cite:

Uebi, T. , Umeda, M. , Maekawa, N. , Karasawa, S. , Handa, H. and Imai, T. (2013) Prohibitins, novel vitamin K2 target factors in osteoblast. Journal of Biosciences and Medicines, 1, 1-4. doi: 10.4236/jbm.2013.13001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dam, H. (1929) Cholesterinstoffwechsel in huhnereiern und h?hnchen. Biochemische Zeitschrift, 215, 475-492.
[2] Karasawa, S., Azuma, M., Kasama, T., Sakamoto, S., Kabe, Y., Imai, T., Yamaguchi, Y., Miyazawa, K. and Handa, H. (2013) Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Molecular Pharmaceutics, 83, 613-620.
[3] Seegers, W.H. and Bang, N.U. (1967) Blood clotting enzymology. Academic Press, New York.
[4] Dam, H. (1935) The antihaemorrhagic vitamin of the chick. Biochemical Journal, 29, 1273-1285.
[5] Hauschka, P.V., Lian, J.B. and Gallop, P.M. (1975) Direct identification of the calciumbinding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proceedings of the National Academy of Sciences of the United States of America, 72, 3925-3929.
[6] Thorp, J.A., Gaston, L., Caspers, D.R. and Pal, M.L. (1995) Current concepts and controversies in the use of vitamin K. Drugs, 49, 376-387.
[7] Iwamoto, J., Takeda, T. and Sato, Y. (2004) Effects of vitamin K2 on osteoporosis. Current Pharmaceutical De- sign, 10, 2557-2576.
[8] Ushiroyama, T., Ikeda, A. and Ueki, M. (2002) Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas, 41, 211-221.
[9] Sudo, H., Kodama, H., Amagai, Y., Yamamoto, S. and Kasai, S. (1983). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of Cell Biology, 96, 191- 198.
[10] Takai, H., Kanematsu, M., Yano, K., Tsuda, E., Higashio, K., Ikeda, K., Watanabe, K. and Yamada, Y. (1998) Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. The Journal of Biological Chemistry, 273, 27091-27096.
[11] Jochum, W., David, J.P., Elliott, C., Wutz, A., Plenk Jr., H., Matsuo, K. and Wagner, E.F. (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Medicine, 6, 980-984.
[12] Dignam, J.D., Lebovitz, R.M. and Roeder, R.G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research, 11, 1475-1489.
[13] Maekawa, N., Hiramoto, M., Sakamoto, S., Azuma, M., Ito, T., Ikeda, M., Naitou, M., Acharya, H.P., Kobayashi, Y., Suematsu, M., Handa, H. and Imai, T. (2011) High-performance affinity purification for identification of 15-deoxy-Δ12,14-PGJ2 interacting factors using magnetic nanobeads. Biomedical Chromatography, 25, 466-471.
[14] Ducy, P. and Karsenty, G. (1995) Two distinct osteob- last-specific cisacting elements control expression of a mouse osteocalcin gene. Molecular and Cellular Biology, 15, 1858-1869.
[15] Geoffroy, V., Ducy, P. and Karsenty, G. (1995) A PEBP2a/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cisacting element. The Journal of Biological Chemistry, 270, 30973-30979.
[16] Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. and Karsenty, G. (1997) Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89, 747-754.
[17] Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. and Kishimoto, T. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755-764.
[18] Hiramoto, M., Maekawa, N., Kuge, T., Ayabe, F., Watanabe, A., Masaike, Y., Hatakeyama, M., Handa, H. and Imai, T. (2010) High-performance affinity chromatography method for identification of L-arginine interacting factors using magnetic nanobeads. Biomedical Chromatography, 24, 606-612.
[19] Umeda, M., Uebi, T., Maekawa, N., Masaike, Y., Handa, H. and Imai, T. (2013) Effective cofactor complex purification using nanobeads. Journal of Bioscience and Medicine, in Press.
[20] Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W.H., Beddington, R.S.P., Mundlos, S., Olsen, B.R., Selby, P.B. and Owen, M.J. (1997). Cbfa1, a Candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89, 765-771.
[21] He, B., Feng, Q., Mukherjee, A., Lonard, D.M., DeMayo, F.J., Katzenellenbogen, B.S., Lydon, J.P. and O’Malley, B.W. (2008) A repressive role for prohibitin in estrogen signaling. Molecular Endocrinology, 22, 344-360.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.