Ferromagnetism in Diluted Magnetic Semiconductor (Ga,Mn)As Quantum Wires and Quantum Wells under the Influence of Photo-Excitation and Spin Wave Scattering

DOI: 10.4236/jmp.2013.412192   PDF   HTML     3,225 Downloads   5,058 Views   Citations


We present a theoretical investigation of the influence of photo-excitation and spin wave scattering on magnetization of the (Ga,Mn)As diluted magnetic semiconductor (DMS) quantum wires (QWRs) and quantum wells (QWs). Double time temperature dependent Greens function formalism is used for the description of dispersion and spectral density of the systems. Our analysis indicates that spin wave scattering plays an influential role in magnetism of both systems while application of light is insignificant in quantum wells. In the absence of spin wave scattering and at sufficiently low temperatures, a result corresponding to the specific heat of dominating electronic contributions in metals is obtained in QWs. In QWRs, however, this magnetic property is found to vary with T1/2 and α2T1/2 so that light matter coupling has a leading effect on lower temperatures, where α is the light matter coupling factor and T is the temperature.

Share and Cite:

C. Amente and K. Dharamvir, "Ferromagnetism in Diluted Magnetic Semiconductor (Ga,Mn)As Quantum Wires and Quantum Wells under the Influence of Photo-Excitation and Spin Wave Scattering," Journal of Modern Physics, Vol. 4 No. 12, 2013, pp. 1563-1568. doi: 10.4236/jmp.2013.412192.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, and F. Pettroff, Physical Review Letters, Vol. 61, 1988, pp. 2472-2475. http://dx.doi.org/10.1103/PhysRevLett.61.2472
[2] G. Binasch, P. Grunberg, F. Saurenbach and W. Zinn, Physical Review B, Vol. 39, 1989, pp. 4828-4830. http://dx.doi.org/10.1103/PhysRevB.39.4828
[3] D. A. Neamen, “Semiconductor Physics and Devices: Basic Principles,” Richard D. Irwin, Inc., University of New Mexico, 1992.
[4] T. Jungwirth, J. Sinova, J. Kucera and A. H. MacDonald, Current Applied Physics, Vol. 3, 2003, pp. 461-464. http://dx.doi.org/10.1016/j.cap.2002.11.001
[5] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, Vol. 287, 2000, pp. 1019-1022.
[6] S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi and H. Munekata, Physical Review Letters, Vol. 78, 1997, pp. 4617-4620. http://dx.doi.org/10.1103/PhysRevLett.78.4617
[7] A. Oiwa, Y. Mitsumori, R. Moriya, T. Slupinski and H. Munekata, Physical Review Letters, Vol. 88, 2002, Article ID: 137202. http://dx.doi.org/10.1103/PhysRevLett.88.137202
[8] H. Munekata, “Inuence of Light on Ferromagnetic Semiconductors: Magnetization Rotation via the Angular Momentum and the Photon Energy,” In: J. Menendez and G. Van de Walle, Eds., Proceedings of the 27th International Conference on the Physics of Semiconductors, Melville, Vol. 772, 2005, p. 307.
[9] E. H. Hwang, A. J. Millis, and S. Das Sarma, Physical Review B, Vol. 65, 2002, pp. 233206-233209. http://dx.doi.org/10.1103/PhysRevB.65.233206
[10] S. R. Eric Yang, J. Sinova, T. Jungwirth, Y. P. Shim and A. H. MacDonald, Physical Review B, Vol. 67, 2003, pp. 045205-045211. http://dx.doi.org/10.1103/PhysRevB.67.045205
[11] T. Jungwith, J. Sinova, J. Masek, J. Kucera and A. H. MacDonald, Reviews of Modern Physics, Vol. 78, 2006, pp. 809-864. http://dx.doi.org/10.1103/RevModPhys.78.809
[12] A. Rudolph, M. Soda, M. Kiessling, T. Wojtowicz, D. Schuh, W. Wegscheider, J. Zweck, C. Back and E. Reiger, Nano Letters, Vol. 9, 2009, pp. 3860-3866. http://dx.doi.org/10.1021/nl9020717
[13] J. A. Czaban, D. A. Thompson and R. R. LaPierre, Nano Letters, Vol. 9, 2009, pp. 148-154. http://dx.doi.org/10.1021/nl802700u
[14] K. Chang, J. B. Xia, H. B. Wu, S. L. Feng and F. M. Peeters, Applied Physics Letters, Vol. 80, 2002, pp. 1788-1790. http://dx.doi.org/10.1063/1.1459491
[15] C. Amente and P. Singh, Modern Physics Letters B, Vol. 25, 2011, pp. 273-280.
[16] D. N. Zubarev, Soviet Physics Uspekhi, Vol. 3, 1960, pp. 320-345. http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
[17] F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Physical Review B, Vol. 57, 1998, pp. R2037-R2040. http://dx.doi.org/10.1103/PhysRevB.57.R2037
[18] T. Kasuya, Progress of Theoretical Physics, Vol. 16, 1956, pp. 45-47. http://dx.doi.org/10.1143/PTP.16.45
[19] G. Bouzerar, EPL, Vol. 79, 2007, pp. 57007-57011. http://dx.doi.org/10.1209/0295-5075/79/57007
[20] C. Kittel, “Quantum Theory of Solids,” 2nd Edition, John Wiley and Sons, Inc., University of California, 1987.
[21] A. Auerbach, “Interacting Electrons and Quantum Magnetism,” Springer, New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0869-3
[22] H. C. Jeon, T. W. Kang, T. W. Kim, Y. J. Yu, W. Jhe and S. A. Song, Journal of Applied Physics, Vol. 101, 2007, Article ID: 023508.
[23] R. Dingle, W. Wiegmann and C. H. Henry, Physical Review Letters, Vol. 33, 1974, pp. 827-830. http://dx.doi.org/10.1103/PhysRevLett.33.827
[24] S. Das Sarma, E. H. Huwang and A. Kaminiski, Physical Review B, Vol. 67, 2003, Article ID: 155201.
[25] J. Sadowskl, Acta Physica Polonica A, Vol. 114, 2008, pp. 1001-1012.
[26] S. T. Jang, K. H. Yoo and L. R. Ram-Mohan, Journal of the Korean Physical Society, Vol. 50, 2007, pp. 834-838. http://dx.doi.org/10.3938/jkps.50.834
[27] C. Kittel, “Introduction to Solid State Physics,” 8th Edition, John Wiley and sons, New York, 2005.
[28] C. Amente and P. Singh, International Journal of Physical Sciences, Vol. 5, 2010, pp. 671-674.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.