Share This Article:

Model of Three-Phase Transmission Line with the Theory of Modal Decomposition Implied

Abstract Full-Text HTML Download Download as PDF (Size:195KB) PP. 1139-1146
DOI: 10.4236/epe.2013.54B217    3,708 Downloads   5,083 Views   Citations

ABSTRACT

This paper shows the development of transmission line model, based on lumped element circuit that provides answers directly in the time and phase domain. This model is valid to represent the ideally transposed line, the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal domain. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the line modal domain.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Cleber da Silva and S. Kurokawa, "Model of Three-Phase Transmission Line with the Theory of Modal Decomposition Implied," Energy and Power Engineering, Vol. 5 No. 4B, 2013, pp. 1139-1146. doi: 10.4236/epe.2013.54B217.

References

[1] J. R. Martí, “Accurate Modelling of Frequency-dependent Transmission Lines in Electromagnetic Transient Simulations,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 1, 1982, pp. 147-155. doi:10.1109/TPAS.1982.317332
[2] L. Hofmann, “Series Expansions for Line Series Impedances Considering Diferent Specific Resistances, Magnetic Permeabilities and Dielectric Permittivities of Conductors, Air and Ground,” IEEE Transactions on Power Delivery, Vol. 18, No. 2, 2003, pp. 564-570. doi:10.1109/TPWRD.2003.810493
[3] M. S. Mamis and M. E. Meral, “State-space Modeling and Analysis of Fault Arcs,” Electric Power Systems Research, Vol. 76, 2005, pp. 46-51. doi:10.1016/j.epsr.2005.04.002
[4] L. M. Wedephol, H. V. Nguyen and G. D. Irwin, “Frequency-dependent Transformation Matrices for Untransposed Transmission Lines using Newton-Raphson Method,” IEEE Transactions on Power Systems, Vol. 11,No. 3, 1996, pp. 1538-1546. doi:10.1109/59.535695
[5] M. C. Tavares, J. Pissolato and C. M. Portela, “Mode Domain Multiphase Transmission Line Model – Use in Transient Studies,” IEEE Transactions on Power Delivery, Vol. 14, No. 4, 1999, pp. 1533-1544. doi:10.1109/61.796251
[6] H. W. Dommel, “EMTP Theory Book, Microtran Power System Analysis Corporation,” Vancouver, British Columbia, 1996.
[7] E. C. M. Costa, S. Kurokawa, J. Pissolato e A. J. Prado, “Efficient Procedure to Evaluate Electromagnetic Transients on Three-phase Transmission Lines,” IET Generation, Transmission & Distribution, Vol. 4, No. 9, 2010, pp. 1069-1081. doi:10.1049/iet-gtd.2009.0660
[8] E. C. M. Costa, S. Kurokara and A. J. Prado e J. Pissolato, “Proposal of na Alternative Transmission Line Model for Symmetrical and Asymmetrical Configurations,” Electrical Power and Energy Systems, 2011, pp. 1375-1383.
[9] S. Kurokara, A. J. Prado, J. Pissolato and L. F. Bovolato e R. S. Daltin, “Alternative Proposal for Modal Representation of a Non-transposed Three-Phase Transmission Line with a Vertical Symmetry Plane,” IEEE Latin America Transaction, Vol. 7, No. 2, 2009, pp. 182-189. doi:10.1109/TLA.2009.5256827
[10] S. Kurokawa, E. C. M. Costa, J. Pissolato and A. J. Prado e L. F. Bovolato, “Proposal of a Transmission Line Model Based on Lumped Elements,” Electric Power Components and Systems, Vol.38, No. 14, 2010, pp. 1577-1594. doi:10.1080/15325008.2010.492450
[11] R. C. Silva e S. Kurokawa, “Integration Methods Used in Numerical Simulations of Electromagnetic Transients”, IEEE Latin America Transactions, Vol. 9, No. 7, 2011, pp. 1060-1065. doi:10.1109/TLA.2011.6129703

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.