Hybrid Synchronization of a Chen Hyper-Chaotic System with Two Simple Linear Feedback Controllers


This paper brings attention on the hybrid synchronization of the Chen hyper-chaotic system by using some simple controllers. We give the sufficient conditions for achieving the goal by using the Lyapunov stability theory, and we verify our conclusion by numerical simulations.

Share and Cite:

G. Xu and S. Chen, "Hybrid Synchronization of a Chen Hyper-Chaotic System with Two Simple Linear Feedback Controllers," Applied Mathematics, Vol. 4 No. 11B, 2013, pp. 13-17. doi: 10.4236/am.2013.411A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Y. Li and J. A. Yorke, “Period Three Implies Chaos,” The American Mathematical Monthly, Vol. 82, No. 10. 1975, pp. 985-992. http://dx.doi.org/10.2307/2318254
[2] E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault and F. J. Varela, “Perception’s Shadow: LongDistance Synchronization of Human Brain Activity,” Nature, Vol. 397, No. 6718, 1999, pp. 430-433.
[3] R. Yoshida, M. Tanaka, S. Onodera, T. Yamaguchi and E. Kokufuta, “In-Phase Synchronization of Chemical and Mechanical Oscillations in Self-Oscillating Gels,” The Journal of Physical Chemistry A, Vol. 104, No. 32, 2000, pp. 7549-7555. http://dx.doi.org/10.1021/jp0011600
[4] W. Singer, “Synchronization of Cortical Activity and Its Putative Role in Information Processing and Learning,” Annual Review of Physiology, Vol. 55, No. 1, 1993, pp. 349-374.
[5] L. M. Pecora and T. L. Carroll, “Synchronization in Chaotic Systems,” Physical Review Letters, Vol. 64, No. 8, 1990, pp. 821-824.
[6] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, “The Synchronization of Chaotic Systems,” Physics Reports, Vol. 366, No. 1, 2002, pp. 1-101.
[7] M. G. Rosenblum, A. S. Pikovsky and J. Kurths, “Phase Synchronization of Chaotic Oscillators,” Physical Review Letters, Vol. 76, No. 11, 1996, pp. 1804-1807.
[8] R. Mainieri and J. Rehacek, “Projective Synchronization in Three-Dimensional Chaotic Systems,” Physical Review Letters, Vol. 82, No. 15, 1999, pp. 3042-3045.
[9] C. M. Kim, S. Rim, W. H. Kye, J. W. Ryu and Y. J. Park, “Anti-Synchronization of Chaotic Oscillators,” Physics Letters A, Vol. 320, No. 1, 2003, pp. 39-46.
[10] Q. Xie, G. Chen and E. M. Bollt, “Hybrid Chaos Synchro Nization and Its Application in Information Processing,” Mathematical and Computer Modeling, Vol. 35, No. 1, 2002, pp. 145-163.
[11] C. Li, Q. Chen and T. Huang, “Coexistence of Anti-Phase and Complete Synchronization in Coupled Chen System via a Single Variable,” Chaos, Solitons & Fractals, Vol. 38, No. 2, 2008, pp. 461-464.
[12] Q. Zhang, J. Lü and S .Chen, “Coexistence of Anti-Phase and Complete Synchronization in the Generalized Lorenz System,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 10, 2010, pp. 30673072. http://dx.doi.org/10.1016/j.cnsns.2009.11.020
[13] K. S. Sudheer and M. Sabir, “Hybrid Synchronization of Hyperchaotic Lu System,” Pramana, Vol. 73, No. 4, 2009, pp. 781-786.
[14] Y. Li, W. K. Tang and G. Chen, “Generating Hyperchaos via State Feedback Control,” International Journal of Bifurcation and Chaos, Vol. 15, No. 10, 2005, pp. 33673375.
[15] F. Zhang, “The Schur Complement and Its Applications,” Springer Science & Business Media, Inc., Boston, 2005.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.