Synthesis, Structure Analysis and Antibacterial Activity of New Potent Sulfonamide Derivatives

DOI: 10.4236/jbnb.2011.22018   PDF   HTML     9,812 Downloads   19,801 Views   Citations


Modification of sulfonamid drug using different principles of chemical reactions was investigated. These reactions involve the condensation of an amino group with triethyl orthoformate and dimethylformamide dimethyl acetal. Ability of sulfa to condense with active keto compounds, like ethyl pyruvate and piprazine carboxyaldehye was studied. Alkyation of sulfa with different chloro derivatives was also reported. The structure of the isolated compound was elucidated and confirmed using elemental analysis and spectral data. The bioactivity of the ob-tained compounds was investigated against different gram positive and gram negative bacteria. The study reveals that most of the modified drugs show high to moderate antibacterial activity.

Share and Cite:

A. Alsughayer, A. Elassar, S. Mustafa and F. Sagheer, "Synthesis, Structure Analysis and Antibacterial Activity of New Potent Sulfonamide Derivatives," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 2, 2011, pp. 143-148. doi: 10.4236/jbnb.2011.22018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] N. Hen, M. Bialer, B. Wlodarczyk, R. H. Finnell and B. Yagen, “Syntheses and Evaluation of Anticonvulsant Pro-file and Teratogenicity of Novel Amide Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenz- ene sulfonamide,” Journal Medical Chemistry, Vol. 53, No. 10, 2010, pp. 4177-4186. doi:10.1021/jm100170w
[2] [2] F.Carta, A. Maresca, A. Scozzafava, D. Vullo and C. T. Supuran, “Carbonic Anhydrase Inhibitors. Diazenylben-zenesulfonamides are Potent and Selective Inhibitors of the Tumor-Associated Isozymes IX and XII over the Cytosolic Isoforms I and II,” Bioorganic & Medical Chemistry, 2009, Vol. 17, No.20, 7093-7099. doi:10.1016/j.bmc.2009.09.003
[3] [3] K. Namba, X. Zheng, K. Motoshima, H. Kobayashi, A. Tai, E. Takahashi, K. Sasaki, K. Okamoto and H. Kakuta, “De-sign and Synthesis of Benzenesulfonanilides Active against Methicillin-Resistant Staphylococcus Aureus and Vanco-mycin-Resistant,” Enterococcus Bioorganic & Medical Chemistry, Vol. 16, No. 11, 2008, pp. 6131-6144.
[4] [4] P. Joseph, F. Turtaut, S. Ouahrani-Bettache, J. L. Montero, I. Nishimori, T. Minakuchi, D. Vullo, A. Scozzafava, S. Kohler, J.-Y. Winum and C. T. Supuran. “Cloning, Char-acterization, and Inhibition Studies of a β-Carbonic Anhy-drase from Brucella suis,” Journal Medical Chemistry, 2010, Vol. 53, No. 5, pp 2277-2285. doi:10.1021/jm901855h
[5] [5] B. L. Wilkinson, L. F. Bornaghi, A. D. Wright, T. A. Houston and S. A. Poulsen, “Anti-Mycobacterial Activity of a Bis-Sulfonamide,” Bioorganic & Medical Chemistry Letter, Vol. 17, No. 5, 2007, pp. 1355-1357. doi:10.1016/j.bmcl.2006.11.079
[6] [6] B. G. Katzung, Basic and Clinical Pharma cology, 6th ed.; University of California: San Francisco, 1995.
[7] [7] S. Joshi and N. Khosla, “QSAR Study on Anti Bacterial Activity of Sulfonamides and Derived Mannich Bases,” Bioorganic Medical Chemistry Letter, Vol. 13, No. 21, 2003, pp. 3747-3751. doi:10.1016/j.bmcl.2003.08.017
[8] [8] S. Joshi, N. Khosla and P. Tiwari, “In Vitro Study of Some Medicinally Important Mannich Bases Derived from an An-titubercular Agent,” Bioorganic & Medical Chemistry, Vol. 12, No. 3, 2004, pp. 571-576. doi:10.1016/j.bmc.2003.11.001
[9] [9] N. Anand, “Sulfonamides and Sulfones. In Burger’s Me-dicinal Chemistry and Drug Discovery,” New York, 1996, pp. 527-573.
[10] [10] A. Kamal, M. N. A. Khan, K. S. Reddy, K. Rohini, G. N. Sastry, B. Sateesh and B. Sridhar, “Synthesis, Structure Analysis and Antibacterial Activity of Some Novel 10-Substituted 2-(4-Piperidyl/Phenyl) -5, 5-Dioxo [1,2,4] triazolo [1,5b] [1,2,4] Benzothiadiazine Derivatives,” Bio-organic & Medical Chemistry Letter, Vol. 17, 2007, pp. 5400-5405. doi:10.1016/j.bmcl.2007.07.043
[11] [11] S. Zimmerman, A. Innocenti, A. Casini, J. G. Ferry, A. Scozzafava and C. T. Supuran, “Carbonic Anhydrase In-hibitors. Inhibition of the Prokaryotic Beta and Gamma- Class Enzymes from Archaea with Sulfonamides,” Bioor-ganic & Medical Chemistry Letter, Vol. 14, 2004, pp. 6001-6006. doi:10.1016/j.bmcl.2004.09.085
[12] [12] V. Garaj, L. Puccetti, G. Fasolis, J-Y. Winum, J-L. Mon-tero, A. Scozzafava, D. Vullo, A. Innocentia and C. T. Su-purana, “Carbonic Anhydrase Inhibitors: Synthesis and In-hibition of Cytosolic/Tumor-Associated Carbonic Anhy-drase Isozymes I, Ii, and Ix with Sulfonamides Incorporat-ing 1,2,4-Triazine Moieties,” Bioorganic Medical Chemis-try Letter, Vol. 14, 2004, pp. 5427-5433. doi:10.1016/j.bmcl.2004.07.087
[13] [13] L. Puccetti, G. Fasolis, D. Vullo, Z. H. Chohan, A. Scoz-zafavab and C. T. Supuranb, “Carbonic Anhydrase Inhibitors. Inhibition of Cytosolic/Tumor-Associated Carbonic Anhy-drase Isozymes I, II, IX, and XII with Schiff Bases Incorpo-rating Chromone and Aromatic Sulfonamide Moieties, and Their Zinc Complexes,” Bioorganic & Medical Chemistry Letter, Vol. 15, 2005, pp. 3096-3101.doi:10.1016/j.bmcl.2005.04.055
[14] [14] J. M. Lehtonen, S. Parkkila, D. Vullo, A. Casini, A. Scoz-zafavac and C. T. Supuranc, “Carbonic Anhydrase Inhibi-tors. Inhibition of Cytosolic Isozyme XIII with Aromatic and Heterocyclic Sulfonamides: A Novel Target for the Drug Design,” Bioorganic& Medical Chemistry Letter, Vol. 14, 2004, pp. 3757-3762. doi:10.1016/j.bmcl.2004.04.106
[15] [15] O. Güzel, A. Innocenti, A. Scozzafava, A. Salman and C. T. Supuran, “Carbonic Anhydrase Inhibitors. Phenacetyl-, Pyridylacetyl- and Thienylacetyl-Substituted Aromatic Sulfonamides Act as Potent and Selective Isoform Vii In-hibitors,” Bioorganic & Medical Chemistry Letter, Vol. 19, 2009, pp. 3170-3173. doi:10.1016/j.bmcl.2009.04.123
[16] [16] A. Scozzafava, T. Owa, A. Mastrolorenzo and C. T. Supu-ran, “Anticancer and Antiviral Sulfonamides,” Current Medical Chemistry Vol. 10 No. 11, 2003, pp. 925-953. doi:10.2174/0929867033457647
[17] [17] A. Weber, A. Casini, A. Heine, D. Kuhn, C. T. Supuran, A. Scozzafava and G. Kiebe, G. “Unexpected Nanomolar In-hibition of Carbonic Anhydrase by COX-2-Selective Cele-coxib: New Pharmacological Opportunities Due to Related Binding Site Recognition,” Journal Medical Chemistry, Vol. 47, No.3, 2004, pp. 550-557. doi:10.1021/jm030912m
[18] [18] G. M. Brown, “Biosynthesis of Folic Acid. II. Inhibition by Sulfonamides,” Journal Biological Chemistry, Vol. 237, No. 1962, pp. 536-540.
[19] [19] P. Huovinen, L. Sundstr?m, G. Swedberg, O. Skold and Antimicrob, “Agents Chemother Trimethoprim and Sul-fonamide Resistance,” Antimicrobiology.Agents and Che-motherapy, Vol. 39, No.2, 1995, pp. 279-289.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.