Dynamic Spatial Discrimination Maps of Discriminative Activation between Different Tasks Based on Support Vector Machines
Guangxin Huang, Huafu Chen, Feng Yin
DOI: 10.4236/am.2011.21010   PDF    HTML     4,067 Downloads   7,845 Views  


As a set of supervised pattern recognition methods, support vector machines (SVMs) have been successfully applied to functional magnetic resonance imaging (fMRI) field, but few studies have focused on visualizing discriminative regions of whole brain between different cognitive tasks dynamically. This paper presents a SVM-based method for visualizing dynamically discriminative activation of whole-brain voxels between two kinds of tasks without any contrast. Our method provides a series of dynamic spatial discrimination maps (DSDMs), representing the temporal evolution of discriminative brain activation during a duty cycle and describing how the discriminating information changes over the duty cycle. The proposed method was applied to investigate discriminative brain functional activations of whole brain voxels dynamically based on a hand-motor task experiment. A set of DSDMs between left hand movement and right hand movement were reached. Our results demonstrated not only where but also when the discriminative activations of whole brain voxels occurred between left hand movement and right hand movement during one duty cycle.

Share and Cite:

G. Huang, H. Chen and F. Yin, "Dynamic Spatial Discrimination Maps of Discriminative Activation between Different Tasks Based on Support Vector Machines," Applied Mathematics, Vol. 2 No. 1, 2011, pp. 85-92. doi: 10.4236/am.2011.21010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer-Verlag, New York, 1995.
[2] V. Vapnik, “Statistical Learning Theory,” John Wiley and Sons Inc., New York, 1998.
[3] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998, pp. 121-167. doi:10.1023/ A:1009715923555
[4] K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith and R. S. J. Frackowiak, “Statistical Parametric Maps in Functional Imaging: A General Linear Approach,” Human Brain Mapping, Vol. 2, No. 4, 1995, pp. 189-210. doi:10.1002/hbm.460020402
[5] D. D. Cox and R. L. Savoy, “Functional Magnetic Resonance Imaging (fMRI) “Brain Reading”: Detecting and Classifying Distributed Patterns of fMRI Activity in Human Visual Cortex,” NeuroImage, Vol. 19, No. 2, 2003, pp. 261-270. doi:10.1016/S1053-8119(03)00049-1
[6] T. M. Mitchell, R. Hutchinson, R. S. Niculescu, F. Pereira and X. Wang, “Learning to Decode Cognitive States from Brain Images,” Machine Learning, Vol. 57, No. 1-2, 2004, pp. 145-175. doi:10.1023/B:MACH.0000035475.85309.1b
[7] C. Davatzikos, K. Ruparel, Y. Fan, D. G. Shen, M. Acharyya and J. W. Loughead, “Classifying Spatial Patterns of Brain Activity with Machine Learning Methods: Application to Lie Detection,” NeuroImage, Vol. 28, No. 3, 2005, pp. 663-668. doi:10.1016/j.neuroimage.2005.08. 009
[8] S. LaConte, S. Strother, V. Cherkassky, J. Anderson and X. Hu, “Support Vector Machines for Temporal Classi?cation of Block Design fMRI Data,” NeuroImage, Vol. 26, No. 2, 2005, pp. 317-329. doi:10.1016/j.neuroimage. 2005.01.048
[9] J. Mour?o-Miranda, A. L. W. Bokde, C. Born, H. Hampel and S. Stetter, “Classifying Brain States and Determining the Discriminating Activation Patterns: Support Vector Machine on Functional MRI Data,” NeuroImage, Vol. 28, No. 4, 2005, pp. 980-995. doi:10.1016/j.neuroimage.2005. 06.070
[10] J. Mour?o-Miranda, E. Reynaud, F. McGlone, G. Calvert and M. Brammer, “The Impact of Temporal Compression and Space Selection on SVM Analysis of Single-Subject and Multi-Subject fMRI Data,” NeuroImage, Vol. 33, No. 4, 2006, pp. 1055-1065. doi:10.1016/j.neuroimage.2006. 08.016
[11] J. Mour?o-Miranda, K. Friston and M. Brammer, “Dynamic Discrimination Analysis: A Spatial-Temporal SVM,” NeuroImage, Vol. 36, No. 1, 2007, pp. 88-99.
[12] Z. Wang, A. R. Childress, J. Wang and J. A. Detre, “Support Vectormachine Learning-Based fMRI Data Group Analysis,” NeuroImage, Vol. 36, No. 4, 2007, pp. 1139-1151. doi:10.1016/j.neuroimage.2007.03.072
[13] J. R. Sato, J. Mour?o-Miranda, M. G. M. Martin, E. Amaro Jr., P. A. Morettin and M. J. Brammer, “The Impact of Functional Connectivity Changes on Support Vector Machines Mapping of fMRI Data,” Journal of Neuroscience Methods, Vol. 172, No. 1, 2008, pp. 94-104. doi:10.1016/j.jneumeth.2008.04.008
[14] J. R. Sato, A. Fujita, C. E. Thomaz, M. G. M. Martin, J. Mour?o-Miranda, M. J. Brammer and E. Amaro Jr., “Evaluating SVM and MLDA in the Extraction of Discriminant Regions for Mental State Prediction,” NeuroImage, Vol. 46, No. 1, 2009, pp. 105-114. doi:10.1016/j. neuroimage.2009.01.032
[15] J. D. Haynes and G. Rees, “Predicting the Orientation of Invisible Stimuli from Activity in Human Primary Visual Cortex,” Nature Neuroscience, Vol. 8, No. 5, 2005, pp. 686-691. doi:10.1038/nn1445
[16] K. J. Friston, C. Frith, F. P. Liddle and R. S. J. Frackowiak, “Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets,” Journal of Cerebral Blood Flow & Metabolism, Vol. 13, No. 1, 1993, pp. 5-14.
[17] E. T. Bullmore, S. Rabe-Hesketh, R. G. Morris, S. C. R. Williams, L. Gregory, J. A. Gray and M. J. Brammer, “Functional Magnetic Resonance Image Analysis of a Large-Scale Neurocognitive Network,” NeuroImage, Vol. 4, No. 1, 1996, pp. 16-33. doi:10.1006/nimg.1996.0026
[18] P. Talairach and J. Tournoux, “A Stereotactic Coplanar Atlas of the Human Brain,” Thieme Publishers, Stuttgart, 1988.
[19] B. Sch?lkopf and A. Smola, “Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,” MIT Press, Cambridge, 2002.
[20] T. Nichols and A. Holmes, “Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples,” Human Brain Mapping, Vol. 15, No. 1, 2002, pp. 1-25. doi:10.1002/hbm.1058
[21] D. M. Allen, “The Relationship between Variable Selection and Data Augmentation and a Method for Prediction,” Technometrics, Vol. 16, No. 1, 1974, pp. 125-127. doi:10.2307/1267500
[22] K. J. Friston, “Statistical Parametric Mapping and Other Analysis of Functional Imaging Data. Brain Mapping: The Methods,” Academic Press, Cambridge, 1996.
[23] M. P. Eckert, G. Buchsbaum and A. B. Watson, “Separability of Spatiotemporal Spectra of Image Sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 12, 1992, pp. 1210-1213. doi:10. 1109/34.177387
[24] L. Zeng, H. F. Chen, L. Ouyang, D. Z. Yao and J. H. Gao, “Quantitative Analysis of Asymmetrical Cortical Activity in Motor Areas during Sequential Finger Movement,” Magnetic Resonance Imaging, Vol. 25, No. 10, 2007, pp. 1370-1375. doi:10.1016/j.mri.2007.03.024

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.