Impacts of Temperature and Frequency on the Dielectric Properties for Insight into the Nature of the Charge Transports in the Tl2S Layered Single Crystals
Aly M. Badr, Haroun A. Elshaikh, Ibraheim M. Ashraf
DOI: 10.4236/jmp.2011.21004   PDF   HTML     8,313 Downloads   13,625 Views   Citations


Investigation of the electric properties of semi-conducting materials in an applied ac electric fields gives information about the nature of charge transport and localized states in the forbidden gap. Layered crystals usually contain structural defects, such as dislocations and vacancies that may form a high density of localized states near the Fermi level. So, the current study was carried out for insight into the dielectric Properties of Tl2S layered single crystals. These properties were studied using the ac measurements in the low temperatures ranging from 77 to 300 K. The real part of dielectric constant ε?, imaginary part of dielectric constant ε?, the dissipation factor tan δ and the alternating current conductivity σac were measured in an applied ac electric field of frequencies extending from 2.5 to 50 kHz. Based on the dependencies of these dielectric parameters on both the frequency and temperature, the dielectric properties of the crystals under investigation were elucidated and analyzed. The ac conductivity was found to obey the power law σac(ω) = Aωs with which the values of the exponent s were evaluated to be less than unity in the range 0.21 ≥ s ≥ 0.19. Furthermore, it was found that the temperature dependence of ac conductivity follows the Arrhenius relation via which the impact of temperature on the electrical processes in an applied ac electric field was illustrated and analyzed. The influences of temperature and frequency on both the exponent s and band gap were also discussed in this investigation.

Share and Cite:

A. Badr, H. Elshaikh and I. Ashraf, "Impacts of Temperature and Frequency on the Dielectric Properties for Insight into the Nature of the Charge Transports in the Tl2S Layered Single Crystals," Journal of Modern Physics, Vol. 2 No. 1, 2011, pp. 12-25. doi: 10.4236/jmp.2011.21004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Radtke and F. W. Dickson, “Carlinite, TI2S, a New Mineral from Nevada,” American Mineralogist, Vol. 60, 1975, pp. 559-565.
[2] J. A. A. Ketelaar, E. W. Gorter and Z. Kristallogr, Vol. 101, 1939, p. 367.
[3] L. I. Man, Soviet Physics - Crystallography, Vol. 15, 1970, p. 399.
[4] G. Giester, C. L. Lengauer, E. Tillmanns and J. Zemann, “Tl2S: Re-Determination of Crystal Structure and Stereochemical Discussion,” Journal of Solid State Chemistry, Vol. 168, 2002, p. 322. doi:10.1006/jssc.2002.9711
[5] S. M. El-Sayed and S. A. Fayek, “Low Temperature Dielectric Behavior and AC Conductivity in Metal-contain- ing Chalcogenide Ge2S3 Films,” Solid State Ionics, Vol. 176, 2005, pp. 149-154. doi:10.1016/j.ssi.2004.07.004
[6] R. A. Suleymanov, S. Ellialtioglu and B. G. Akinoglu, “Layered Semiconductor GeS as Birefringent Stratified Medium,” Physical Review B, Vol. 52, 1995, 7806. doi:10.1103/PhysRevB.52.7806
[7] R. Clasen, G. Harbeke, A. Korst, F. Levy, O. Madelung, K. Masclike, G. Nimtz, B. Schlict, F. J. Schlicht, F. J. Schmittle and J. Treusch, “Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology,” In: K. H. Hellwege and O. Madelung, Eds., Springer, Berlin, 1983, p. 94.
[8] G. Morgaritondo, “Electronic Structure and Electronic Transition in Layer Materials,” In: V. Grasso, Ed., Physics and Chemistry of Materials with Low Dimensional Structure, Reidel, Dordrecht, 1986.
[9] G. D. Guseinov, E. Mooser, E. M. Kerimova, R. S. Gamidov, I. V. Alekseev and M. Z. Ismailov, “On Some Properties of TlInS2 (Se2, Te2) Single Crystals,” Physica Status Solidi, Vol. 34, 1969, p. 33. doi:10.1002/pssb.19690340103
[10] K. K. Mamedov, A. M. Adbullaev and E. M. Kerimova, “Heat Capacities of TlInS2 and TlInSe2 Crystals at Low Temperatures,” Physica Status Solidi A, Vol. 94, 1986, p. 115. doi:10.1002/pssa.2210940112
[11] G. D. Guseinov, A. U. Malsagov, A. Kh. Matiev S. K. Umarov, E. G. Abdullaev and M. L. Shubnikov, Soviet Physics Semiconductors, Vol. 19, 1985, p. 445.
[12] N. M. Gasanly, N. N. Menlik, A. S. Ragimov and V. I. Tagirov, Soy. Phys. Solid State, Vol. 26, 1984, p. 336.
[13] K. R. Allakhverdiev, S. S. Babaev, N. A. Bakhyshov, T. G. Mamedov, E. Yu. Salaev and E. K. Efendieva, “The Influence of Hydrostatic Pressure on the Fundamental Absorption Edge of Crystals with TlSe-Type Structure,” Physica Status Solidi, Vol. 126, 1984, K139. doi:10.1002/pssb.2221260244
[14] W. Henkel, H. D. Hochheimer, C. Carlone, A. Werner, S. Ves and H. G. V. Vonscg, “High-pressure Raman Study of the Ternary Chalcogenides TlGaS2, TlGaSe2, TlInS2, and TlInSe2,” Physical Review B, Vol. 26, 1982, p. 3211. doi:10.1103/PhysRevB.26.3211
[15] S. N. Mustafaeva, M. M. Asadov and K. S. Qahramanov, “Frequency-Dependent Dielectric Coefficients of TlInS2 Amorphous Films,” Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol. 10, No. 2, 2007, pp. 58-61.
[16] S. N. Mustafaeva, M. M. Asadov and V. A. Ramazanzade, “Dielectric Properties and Ac-conductivity of TlInS2 Single Crystals,” Fizika Tverdogo Tela, Vol. 38, No. 1, 1996, pp. 14-18.
[17] S. N. Mustafaeva, V. A. Aliev, M. M. Asadov, “DC Hopping Conduction in TlGaS2 and TlInS2 Single Crystals,” Fiz. Tverd. Tela, Vol. 40, No. 4, 1998, pp. 612-615.
[18] E. ?entürk, “Dielectric Characteristics of a Ce3+-Doped Sr0.61Ba0.39Nb2O6 Single Crystal with Cole-Cole Plots Technique,” Journal of Solid State Chemistry, Vol. 177, No. 4-5, 2004, pp. 1508-1512. doi:10.1016/j.jssc.2003.12.001
[19] H. A. Elshaikh, I. M. Ashraf and A. M. Badr, “Special Technique for Growing Tl4S3, Anisotropy of Electrical Conduction and Photophysical Properties,” Journal of Physical Chemistry B, Vol. 108, 2004, pp. 11327-11332. doi:10.1021/jp031035z
[20] I. Chaus et al., Russian Journal of Inorganic Chemistry, Vol. 24, 1979, p. 346.
[21] K. A. Narula, R. Singh and S. Chandra, “Low Frequency AC Conduction and Dielectric Relaxation in Poly(N-methyl Pyrrole),” Bulletin of Materials Science, Vol. 23, No. 3, 2000, pp. 227-232.
[22] B. Lal, S. K. Khosa, R. Tickoo, K. K. Bamzai and P. N. Kotru, “Dielectric Characteristics of Melt Grown Doped KMgF3 Crystals,” Materials Chemistry and Physics, Vol. 83, 2004, pp. 158-168.
[23] M. Barsoum, “Fundamentals of Ceramics,” McGraw-Hill, New York, 1997.
[24] H. E. Atyia, “Deposition Temperature Effect on the Electric and Dielectric Properties of InSbSe3 Thin Films,” Vacuum, Vol. 81, 2007, pp. 590-598. doi:10.1016/j.vacuum.2006.07.011
[25] L. L. Hench and J. K. West, “Principles of Electronic Ceramics,” Wiley, New York, 1990.
[26] R. H. Chen, R. J. Wang, T. M Chen and C. S. Shern, “Studies on the Dielectric Properties and Structural Phase Transition of K2SO4 Crystal,” Journal of Physics and Chemistry of Solids, Vol. 61, 2000, pp. 519-527. doi:10.1016/S0022-3697(99)00246-2
[27] L. Sirdeshmukh, K. Krishna Kumar, S. B. Laxaman, A. R. Krishna and G. Sathaiah, “Dielectric Properties and Electrical Conduction in Yttrium Iron Garnet (YIG),” Bulletin of Materials Science, Vol. 21, 1998, p. 219. doi:10.1007/BF02744973
[28] R. P. Mahajan, K. K. Patankar, M. B. Kothale and S. A. Patil, “Conductivity, Dielectric Behaviour and MagnetoElectric Effect in Copper Ferrite-Barium Titanate Composites,” Bulletin of Materials Science, Vol. 23, 2000, p. 273. doi:10.1007/BF02720082
[29] J. Appel, “Polarons,” Solid State Physics, Vol. 21, 1968, p. 193. doi:10.1016/S0081-1947(08)60741-9
[30] K. Amarendra Singh, T. C. Goel and R. G. Mendiratta, “Dielectric Properties of Mn-substituted Ni-Zn Ferrites,” Journal of Applied Physics, Vol. 91, No. 10, 2002, pp. 6626-6629.
[31] V. Gupta, K. K. Bamzai, P. N. Kotru and B. M. Wanklyn, “Dielectric Properties, AC Conductivity and Thermal Behaviour of Flux Grown Cadmiumtitanate Crystals,” Materials Science and Engineering B, Vol. 130, 2006, pp. 163-172.
[32] M. M. El-Desoky, “Dielectric Behaviour and AC Conductivity of Sodium Borate Glass Containing CoO,” Journal of Physics and Chemistry of Solids, Vol. 59, No. 9, 1998, pp. 1659-1666.
[33] F. Salman, S. Aboelhssan, E. Sheha and M. K. Elmansy, “Dielectric Properties and Conductivity of KHCO3,” Turkish Journal of Physics, Vol. 28, 2004, pp. 57-63.
[34] D. Petrova, S. Dobreva, M. Veleva. J. Macicek and M. Gospodinov, “Growth, Structure, Dielectric Behavior and AC-Conductivity of Pyrochlore Lead-Scandium Tantalate Single Crystals,” Material Research Bulletin, Vol. 32, No. 11, 1997, pp. 1543-1549. doi:10.1016/S0025-5408(97)00136-0
[35] P. Suryanarayana, H. N. Acharya and K. Rao, “Dielectric Properties of Mercuric Iodide (HgI2) Single Crystals,” Journal of Materials Science Letters, Vol. 3, 1984, p. 21. doi:10.1007/BF00720065
[36] P. Smyth, “Dielectric Behaviour and Structure,” McGraw- Hill, New York, 1965.
[37] A. J. Moulson and J. M. Herbert, “Electroceramics: Materials Properties Applications,” Chapman & Hall, New York, 1990.
[38] S. Bhat, S. K. Khosa, P. N. Kotru and R. P. Tandon, “Dielectric Studies of Lanthanum Heptamolybdate Crystals Grown from Gels,” Materials Science and Engineering B, Vol. 30, 1995, p. 7. doi:10.1016/0921-5107(94)01129-X
[39] S. Bhat, S. K. Khosa, P. N. Kotru and R. P. Tandon, “Dielectric Characteristics of Neodymium Heptamolybdate Crystals Grown by Gel Encapsulation Technique,” Crystal Research and Technology, Vol. 30, No. 2, 1995, pp. 267-273. doi:10.1002/crat.2170300225
[40] S. Bhat, S. K. Khosa, P. N. Kotru and R. P. Tandon, Tandon, “Dielectric Characteristics of Gel-Grown Mixed Neodymium-Lanthanum-Heptamolybdate Crystals,” Journal of Materials Science Letters, Vol. 14, 1995, p. 564. doi:10.1007/BF00275377
[41] Balarew and R. Duhlew, “Application of the Hard and Soft Acids and Bases Concept to Explain Ligand Coordination in Double Salt Structures,” Journal of Solid State Chemistry, Vol. 55, 1984, p. 1. doi:10.1016/0022-4596(84)90240-8
[42] A. K. Jonscher, “The ‘Universal’ Dielectric Response,” Nature, Vol. 267, 1977, p. 673.
[43] K. Jonscher, “Analysis of the Alternating Current Properties of Ionic Conductors,” Journal of Materials Science, Vol. 13, 1978, p. 553. doi:10.1007/BF00541805
[44] M. D. Ingram, “Ionic Conductivity in Glass,” Physics and Chemistry of Glasses, Vol. 28, 1987, p. 215.
[45] A. Angell, “Dynamic Processes in Ionic Glasses,” Chemical Reviews, Vol. 90, 1990, p. 523. doi:10.1021/cr00101a006
[46] A. R. Long, “Frequency-Dependent Loss in Amorphous Semiconductors,” Advances in Physics, Vol. 31, 1982, p. 553. doi:10.1080/00018738200101418
[47] S. R. Elliott, “A.C. Conduction in Amorphous Chalcogenide and Pnictide Semiconductors,” Advances in Physics, Vol. 36, 1987, p. 135. doi:10.1080/00018738700101971
[48] M. Pollak and T. H. Geballe, “Low-Frequency Conductivity Due to Hopping Processes in Silicon,” Physical Review, Vol. 122, 1961, p. 1742. doi:10.1103/PhysRev.122.1742
[49] P. G. Bruce, R. A. West and D. P. Almond, “A New Analysis of AC Conductivity Data in Single Crystal β-Alumina,” Solid State Ionics, Vol. 7, 1982, p. 57. doi:10.1016/0167-2738(82)90069-8
[50] W. K. Lee, J. F. Liu and A. S. Nowick, “Limiting Behavior of AC Conductivity in Ionically Conducting Crystals and Glasses: A New Universality,” Physical Review Letters, Vol. 67, 1991, p. 1559. doi:10.1103/PhysRevLett.67.1559
[51] L. Murowski and R. J. Barczynski, “Dielectric Properties of Transition Metal Oxide Glasses,” Journal of Non- Crystalline Solids, Vol. 185, 1995, p. 84. doi:10.1016/0022-3093(95)00677-X

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.