Synthesis of Solid Acid Catalysts Based on TiO2- SO42-and Pt/TiO2- SO42- Applied in n-Hexane Isomerization
Juan Manuel Hernández Enríquez, Luz Aracely Cortez Lajas, Ricardo García Alamilla, Estefanía Ángeles San Martín, Pedro García Alamilla, Edward Brent Handy, Guadalupe Cárdenas Galindo, Luz Arcelia García Serrano
CIEP, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #6, Zona Universitaria, 78210 San Luis Potosí, San Luis Potosí, México.
Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo 30 de Junio #1520, Barrio La Laguna Ticomán, 07340 México D.F., México.
Instituto Tecnológico de Cd. Madero, División de Estudios de Posgrado e Investigación, Juventino Rosas y Jesús Urueta S/N, Col. Los Mangos, 89440 Cd. Madero, Tamaulipas, México.
Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias, Avenida Universidad S/N, Zona Cultura, Colonia Magisterial, 86040 Villahermosa Tabasco, México.
DOI: 10.4236/ojmetal.2013.33006   PDF   HTML     4,857 Downloads   8,601 Views   Citations


The physicochemical properties and catalytic activity of pure and sulfated titanium oxide (TiO2 and ) is described in this work. Titanium hydroxide synthesized by the sol-gel method was impregnated with a 1 N H2SO4 solution, varying amount of sulfate ions () in the range from 10 to 20 wt%. Pure and modified hydroxides were calcined at 500°C for 3 h and then characterized by TGA-DTG, XRD, BET, FT-IR, potentiometric titration with n-butylamine and 2-propanol dehydration. Catalytic activity of materials was tested in the n-hexane isomerization at 350°C. The results showed that TiO2 and mainly developed anatase phase. All have acceptable specific surface area (95-105 m2/g). Potentiometric titration with n-butylamine revealed that showed higher acidity (430-530 mV) than compared to pure TiO2 (﹣15 mV), indicating that this oxide only has weak acidity. The results showed good relationship between acidity determined by potentiometric titration with n-butylamine and the catalytic activity evaluated by 2-propanol dehydration and n-hexane isomerization. Titanium oxide with 20 wt% ofions was the material that demonstrated the highest catalytic activity for both reactions.

Share and Cite:

Enríquez, J. , Lajas, L. , Alamilla, R. , Martín, E. , Alamilla, P. , Handy, E. , Galindo, G. and Serrano, L. (2013) Synthesis of Solid Acid Catalysts Based on TiO2- SO42-and Pt/TiO2- SO42- Applied in n-Hexane Isomerization. Open Journal of Metal, 3, 34-44. doi: 10.4236/ojmetal.2013.33006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. R. Shon, “Recent Advances in Solid Superacids,” Journal of Industrial and Engineering Chemistry, Vol. 10, No. 1, 2004, pp. 1-15.
[2] K. Tanabe, M. Misono, Y. Ono and H. Hattori, “New Solids Acids and Bases,” Elsevier Science Publisher B-V, Amsterdam, 1989, p. 300.
[3] K. Arata, “Solid Superacids,” Advances in Catalysis, Vol. 37, 1990, pp. 165-211.
[4] B. H. Davis, R. A. Keogh and R. Srinivasan, “Sulfated Zirconia as a Hydrocarbon Conversion Catalyst,” Catalysis Today, Vol. 20, No. 2, 1994, pp. 219-256. doi:10.1016/0920-5861(94)80004-9
[5] J. R. Shon, Y. H. Kim, B. L. Lee and H. W. Kim, “Physicochemical and Catalytic Properties of NiSO4 Supported on Fe2O3 for Acid Catalysis,” Journal of Industrial and Engineering Chemistry, Vol. 13, No. 6, 2007, pp. 1035-1042.
[6] X. Bokhimi, A. Morales, E. Ortiz, T. López, R. Gómez and J. Navarrete, “Sulfate Ions in Titania Polymorphs,” Journal of Sol-Gel Science and Technology, Vol. 29, No. 1, 2004, pp. 31-40. doi:10.1023/B:JSST.0000016135.02238.0e
[7] F. Lonyi, J. Valyon, J. Engelhardt and F. Mizukami, “Characterization and Catalytic Properties of Sulfated ZrO2-TiO2 Mixed Oxides,” Journal of Catalysis, Vol. 160, No. 2, 1996, pp. 279-289. doi:10.1006/jcat.1996.0146
[8] J. P. Chen and R. T. Yang, “Selective Catalytic Reduction of NO with NH3 on /TiO2 Superacid Catalyst,” Journal of Catalysis, Vol. 139, No. 1, 1993, pp. 277-288. doi:10.1006/jcat.1993.1023
[9] D. Das, H. K. Mishra, K. M. Parida and A. K. Dalai, “Preparation, Physico-Chemical Characterization and Catalytic Activity of Sulphated ZrO2-TiO2 Mixed Oxides,” Journal of Molecular Catalysis A: Chemical, Vol. 189, No. 2, 2002, pp. 271-282. doi:10.1016/S1381-1169(02)00363-1
[10] G. D. Yadav and J. J. Nair, “Sulfated Zirconia and Its Modified Versions as Promising Catalysts for Industrial Processes,” Microporous and Mesoporous Materials, Vol. 33, No. 1, 1999, pp. 1-48. doi:10.1016/S1387-1811(99)00147-X
[11] T. Kimura, “Development of Pt/ /ZrO2 Catalyst for Isomerization of Light Naphtha,” Catalysis Today, Vol. 81, No. 1, 2003, pp. 57-63. doi:10.1016/S0920-5861(03)00102-0
[12] C. R. Vera, C. L. Pieck, K. Shimizu and J. M. Parera, “Tetragonal Structure, Anionic Vacancies and Catalytic Activity of -ZrO2 Catalysts for n-Butane Isomerization,” Applied Catalysis A: General, Vol. 230, No. 1, pp. 137-151.
[13] K. Tomishige, A. Okabe and K. Fujimoto, “Effect of Hydrogen on n-Butane Isomerization over Pt/ -ZrO2 and Pt/SiO2 + -ZrO2,” Applied Catalysis A: General, Vol. 194-195, 2000, pp. 383-393.
[14] Y. Ono, “A Survey of the Mechanism in Catalytic Isomerization of Alkanes,” Catalysis Today, Vol. 81, No. 1, 2003, pp. 3-16. doi:10.1016/S0920-5861(03)00097-X
[15] A. Kayo, T. Yamaguchi and K. Tanabe, “The Effect of Preparation Method on the Acidic and Catalytic Properties of Iron Oxide,” Journal of Catalysis, Vol. 83, No. 1, 1983, pp. 99-106. doi:10.1016/0021-9517(83)90033-7
[16] T. Yamagushi, T. Jin and K. Tanabe, “Structure of Acid Sites on Sulfur-Promoted Iron Oxide,” The Journal Physical Chemistry, Vol. 90, No. 14, 1986, pp. 3148-3152. doi:10.1021/j100405a022
[17] T. Jin, T. Yamagushi and K. Tanabe, “Mechanism of Acidity Generation on Sulfur-Promoted Metal Oxides,” The Journal Physical Chemistry, Vol. 90, No. 20, 1986, pp. 4794-4796. doi:10.1021/j100411a017
[18] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293, No. 5528, 2001, pp. 269-271. doi:10.1126/science.1061051
[19] A. Zaleska, P. Górska, J. W. Sobczak and J. Hupka, “Thioacetamide and Thiourea Impact on Visible Light Activity of TiO2,” Applied Catalysis B, Vol. 76, No. 1-2, 2007, pp. 1-8. doi:10.1016/j.apcatb.2007.05.005
[20] T. Ihara, M. Miyoshi, M. Ando, S. Sugihara and Y. Iriyama, “Preparation of a Visible-Light-Active TiO2 Photocatalyst by RF Plasma Treatment,” Journal of Materials Science, Vol. 36, No. 17, 2001, pp. 4201-4207. doi:10.1023/A:1017929207882
[21] D. S. Muggli and L. Ding, “Photocatalytic Performance of Sulfated TiO2 and Degussa P-25 TiO2 during Oxidation of Organics,” Applied Catalysis B, Vol. 32, No. 3, 2001, pp. 181-194. doi:10.1016/S0926-3373(01)00137-0
[22] W. Y. Su, X. Z. Fu and K. M. Wei, “Effect of Sulfation on Structure and Photocatalytic Performance of TiO2,” Acta Physico-Chimica Sinica, Vol. 17, No. 1, 2001, pp. 28-31.
[23] X. Fu, W. A. Zeltner, Q. Yang and M. A. Anderson, “Catalytic Hydrolysis of Dichlorodifluoromethane (CFC-12) on Sol-Gel-Derived Titania Unmodified and Modified with H2SO4,” Journal of Catalysis, Vol. 168, No. 2, 1997, pp. 482-490. doi:10.1006/jcat.1997.1660
[24] J. F. Tanguay, S. L. Suib and R. W. Coughlin, “Dichloromethane Photodegradation Using Titanium Catalysts,” Journal of Catalysis, Vol. 117, No. 2, 1989, pp. 335-347. doi:10.1016/0021-9517(89)90344-8
[25] G. Colón, M. C. Hidalgo and J. A. Navío, “Photocatalytic Behaviour of Sulphated TiO2 for Phenol Degradation,” Applied Catalysis B: Enviromental, Vol. 45, No. 1, 2003, pp. 39-50. doi:10.1016/S0926-3373(03)00125-5
[26] S. N. Aisyiyah, D. S. Kusuma, A. Kristiani, J. A. Laksmono and S. Tursiloadi, “Preparation and Characterization of Sulfated Titania Catalysts for the Isomerisation of Citronellal,” International Journal of Basic & Applied Sciences, Vol. 10, No. 6, 2010, pp. 5-10.
[27] O. Rodríguez, F. González, P. Bosh, M. Portilla and T. Viveros, “Physical Characterization of TiO2 and Al2O3 Prepared by Precipitation and Sol-Gel Methods,” Catalysis Today, Vol. 14, No. 2, 1992, pp. 243-252. doi:10.1016/0920-5861(92)80026-J
[28] E. N. S. Muccillo and D. M. ávila, “Synthesis and Characterization of Submicron Zirconia-12 mol% Ceria Ceramics,” Ceramics International, Vol. 25, No. 4, 1999, pp. 345-351. doi:10.1016/S0272-8842(98)00046-7
[29] S. Rossignol, F. Gerard and D. Duprez, “Effect of the Preparation Method on the Properties of Zirconia-Ceria Materials,” Journal of Materials Chemistry, Vol. 9, No. 7, 1999, pp. 1615-1620. doi:10.1039/a900536f
[30] J. Wenzel, “Trends in Sol-Gel Processing: Toward 2004,” Journal of Non-Crystalline Solids, Vol. 73, No. 1-3, 1985, pp. 693-699. doi:10.1016/0022-3093(85)90389-8
[31] J. D. Mackenzie, “Applications of the Sol-Gel Process,” Journal of Non-Crystalline Solids, Vol. 100, No. 1-3, 1988, pp. 162-168. doi:10.1016/0022-3093(88)90013-0
[32] J. Livage and C. Sanchez, “Sol-Gel Chemistry,” Journal of Non-Crystalline Solids, Vol. 145, 1992, pp. 11-19.
[33] M. Barrera, M. Viniegra, J. Escobar and J. A. De Los Reyes, “Control de las Propiedades Texturales de ZrO2-TiO2 Sol-Gel. Efecto de Parámetros de Síntesis,” Journal of the Mexican Chemical Society, Vol. 46, No. 2, 2002, pp. 73-78.
[34] M. A. Santana, M. Morán, J. Hernández, S. Castillo and R. Gómez, “Physical Properties of TiO2 Prepared by Sol-Gel under Different pH Conditions for Photocatalysis,” Superficies y Vacío, Vol. 18, No. 1, 2005, pp. 46-49.
[35] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, “Preparation of S-doped TiO2 Photocatalysis and their Photocatalytic Activities under Visible Light,” Applied Catalysis A: General, Vol. 265, No. 1, 2004, pp. 115-121. doi:10.1016/j.apcata.2004.01.007
[36] K. Arata, “Preparation of Superacids by Metal Oxides for Reactions of Butanes and Pentanes,” Applied Catalysis A: General, Vol. 146, No. 1, 1996, pp. 3-32. doi:10.1016/0926-860X(96)00046-4
[37] M. Hino, S. Kobayashi and K. Arata, “Reactions of Butane and Isobutane Catalyzed by Zirconium Oxide Treated with Sulfate Ion. Solid Superacid Catalyst,” Journal of American Catalysis Society, Vol. 101, No. 21, 1979, pp. 6439-6441. doi:10.1021/ja00515a051
[38] M. S. Scurrell, “Conversion of Methane-Ethylene Mixtures over Sulphate-Treated Zirconia Catalysts,” Applied Catalysis, Vol. 34, 1987, pp. 109-117. doi:10.1016/S0166-9834(00)82449-5
[39] M. Hino and K. Arata, “Acylation of Toluene with Acetic and Benzoic Acids Catalyzed by a Solid Superacid in Heterogeneous System,” Journal of the Chemical Society, Chemical Communications, Vol. 1, No. 3, 1985, pp. 112-113. doi:10.1039/c39850000112
[40] J. C. Yori, J. C. Luy and J. M. Parera, “n-Butane Isomerization on Solid Superacids,” Catalysis Today, Vol. 5, No. 4, 1989, pp. 493-502. doi:10.1016/0920-5861(89)80013-6
[41] J. R. Shon and H. J. Kim, “High Catalytic Activity of NiO-TiO2/SO22? for Ethylene Dimerization,” Journal of Catalysis, Vol. 101, No. 2, 1986, pp. 428-433. doi:10.1016/0021-9517(86)90270-8
[42] S. Imamura, T. Shiomi, S. Ishida, K. Utani and H. Jindai, “Decomposition of Dichlorodifluoromethane on TiO2/ SiO2,” Industrial and Engineering Chemistry Research, Vol. 29, No. 9, 1990, pp. 1758-1761. doi:10.1021/ie00105a003
[43] K. Tanabe, T. Yamaguchi, K. Akiyama, A. Mitoh, K. Iwabuchi and K. Isogai, “The Catalytic Synthesis of Acylated Compounds by Using Solid Superacid,” 8th International Congress on Catalysis, Berlin, 2-6 July 1984, p. 601.
[44] W. Hua, Y. Xia, Y. Yue and Z. Gao, “Promoting Effect of Al on SO2?4/MxOy(M=Zr, Ti, Fe) Catalysts,” Journal of Catalysis, Vol. 196, No. 1, 2000, pp. 104-114. doi:10.1006/jcat.2000.3032
[45] J. Lim, R. Liu and R. Zhao, “The Catalytic Synthesis of Isoamyl Butyrate by SO42?/TiO2/La3+ Rare-Earth Solid Superacid,” Chinese Journal of Inorganic Chemistry, Vol. 16, No. 5, 2000, pp. 829-832.
[46] R. M. de Almeida, L. K. Noda, N. S. Gon?alves, S. M. P. Meneghetti and M. R. Meneghetti, “Transesterification Reaction of Vegetal Oils, Using Superacid Sulfated TiO2-Base Catalysts,” Applied Catalysis A: General, Vol. 347, No. 1, 2008, pp. 100-105. doi:10.1016/j.apcata.2008.06.006
[47] Q. Sheng, S. Yuan, J. Zhang and F. Chen, “Synthesis of Mesoporous Titania with High Photocatalytic Activity by Nanocrystalline Particle Assembly,” Microporous and Mesoporous Materials, Vol. 87, No. 3, 2006, pp. 177-184. doi:10.1016/j.micromeso.2005.06.036
[48] R. López, R. Gómez and S. Oros, “Photophysical and Photocatalytic Properties of TiO2-Cr Sol-Gel Prepared Semiconductors,” Catalysis Today, Vol. 166, No. 1, 2011, pp. 159-165. doi:10.1016/j.cattod.2011.01.010
[49] P. Ciambelli, D. Sannino, V. Palma and V. Vaiano, “The Effect of Sulphate Doping on Nanosized TiO2 and MoOx/TiO2 Catalysts in Cyclohexane Photooxidative Dehydrogenation,” International Journal of Photoenergy, Vol. 1, 2008, Article ID: 258631. doi:10.1155/2008/258631
[50] S. Storck, H. Bretinger and W. F. Maier, “Characterization of Micro-and Mesoporous Solids by Physisorption Methods and Pore-Size Analysis,” Applied Catalysis A: General, Vol. 174, No. 1, 1998, pp. 137-146. doi:10.1016/S0926-860X(98)00164-1
[51] G. Leonfanti, M. Padovan, G. Tozzola and B. Venturelli, “Surface Area and Pore Texture of Catalysts,” Catalysis Today, Vol. 41, No. 1-3, 1998, pp. 207-219. doi:10.1016/S0920-5861(98)00050-9
[52] K. S. W. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol and T. Siemieniewska, “Reporting Physisorption Date for the Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity,” Pure and Applied Chemistry, Vol. 57, No. 4, 1985, pp. 603-620. doi:10.1351/pac198557040603
[53] L. González, I. Hernández, F. C. Robles, H. Dorantes and E. M. Arce, “Sonochemical Synthesis of Nanostructured Anatase and Study of the Kinetics among Phase Transformation and Coarsening as a Function of Heat Treatment Conditions,” Journal of the European Ceramic Society, Vol. 28, No. 8, 2008, pp. 1585-1594. doi:10.1016/j.jeurceramsoc.2007.10.013
[54] D. A. Skoog and J. J. Leary, “Análisis Instrumental,” Mc-Graw Hill, México City, 2003.
[55] T. Mishra, “Anion Supported TiO2-ZrO2 Nanomaterial Synthesized by Reverse Microemulsion Technique as an Efficient Catalyst for Solvent Free Nitration of Halobenzene,” Catalysis Communications, Vol. 9, No. 1, 2008, pp. 21-26. doi:10.1016/j.catcom.2007.05.013
[56] J. Rubio, J. L. Oteo, M. Villegas and P. Duran, “Characterization and Sintering Behaviour of Submicrometre Titanium Dioxide Spherical Particles Obtained by Gas-Phase Hydrolysis of Titanium Tetrabutoxide,” Journal of the Chinese Chemical Society, Vol. 32, No. 3, 1997, pp. 643-652.
[57] R. Cid and G. Pecchi, “Potentiometric Method for Determining the Number and Relative Strength of Acid Sites in Colored Catalysis,” Applied Catalysis, Vol. 14, 1985, pp. 15-21. doi:10.1016/S0166-9834(00)84340-7
[58] L. Pizzio, P. Vázquez, C. Cáceres and M. Blanco, “Tungstophosphoric and Molybdophosphoric Acids Supported on Zirconia as Esterification Catalysts,” Catalysis Letters, Vol. 77, No. 4, 2001, pp. 233-239. doi:10.1023/A:1013218307792
[59] Y. S. Hsu, Y. L. Wang and A. N. Ko, “Effect of the Sulfation of Zirconia on Catalytic Performance in the Dehydration of Aliphatic Alcohols,” Journal of the Chinese Chemistry Society, Vol. 56, No. 2, 2009, pp. 314-322.
[60] J. E. Rekoske and M. A. Barteau, “Kinetics and Selectivity of 2-Propanol Conversion on Oxidized Anatase TiO2,” Journal of Catalysis, Vol. 165, No. 1, 1997, pp. 57-72. doi:10.1006/jcat.1997.1467
[61] R. T. Morrison and R. N. Boyd, “Química Orgánica,” Pearson Educación, México City, 1998.
[62] C. G. Gómez Sierra, R. G. Márquez Nuno and F. C. Domínguez Sánchez, “Introducción a la Química Orgánica,” Instituto Politécnico Nacional, México City, 2009.
[63] R. A. Comelli, C. R. Vera and J. M. Parera, “Influence of ZrO2 Crystalline Structure and Sulfate Ion Concentration on the Catalytic Activity of SO2?4-ZrO2,” Journal of Catalysis, Vol. 151, No. 1, 1995, pp. 96-101. doi:10.1006/jcat.1995.1012
[64] O. B. Belskaya, I. G. Danilova, M. O. Kazakov, T. I. Gulyaeva, L. S. Kibis, A. I. Boronin, A. V. Lavrenov and V. A. Likholobov, “Investigation of Active Metal Species Formation in Pd-Promoted Sulfated Zirconia Isomerization Catalyst,” Applied Catalysis A: General, Vol. 387, No. 1, 2010, pp. 5-12. doi:10.1016/j.apcata.2010.07.052
[65] J. G. Santiesteban, D. C. Calobro, C. D. Chang, J. C. Vartuli, T. J. Fiebig and R. D. Bastian, “The Role of Platinum in Hexane Isomerization over Pt/FeOy/WOx/ ZrO2,” Journal of Catalysis, Vol. 202, No. 1, 2001, pp. 25-33. doi:10.1006/jcat.2001.3229
[66] J. C. Duchet, D. Guillaume, A. Monnier, C. Dujardin, J. P. Gilson, J. van Gestel, G. Szabo and P. Nascimento, “Isomerization of n-Hexane over Sulfated Zirconia: Influence of Hydrogen and Platinum,” Journal of Catalysis, Vol. 198, No. 2, 2001, pp. 328-337. doi:10.1006/jcat.2000.3152
[67] K. Ebitani, H. Hattori and K. Tanabe, “Generation of Protonic Acid Sites Originating from Molecular Hydrogen on the Surface of Zirconium Oxide Promoted by Sulfate Ion and Platinum,” Langmuir, Vol. 6, No. 12, 1990, pp. 1743-1744. doi:10.1021/la00102a006
[68] K. Ebitani, J. Konishi and H. Hattori, “Skeletal Isomerization of Hydrocarbons over Zirconium Oxide Promoted by Platinum and Sulfate Ion,” Journal of Catalysis, Vol. 130, No. 1, 1991, pp. 257-267. doi:10.1016/0021-9517(91)90108-G
[69] K. Ebitani, J. Tsuji, H. Hattori and H. Kita, “Dynamic Modification of Surface Acid Properties with Hydrogen Molecule for Zirconium Oxide Promoted by Platinum and Sulfate Ions,” Journal of Catalysis, Vol. 135, No. 2, 1992, pp. 609-617. doi:10.1016/0021-9517(92)90057-O
[70] E. Iglesia, S. L. Soled and G. M. Kramer, “Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantly Hydride Transfer Species,” Journal of Catalysis, Vol. 144, No. 1, 1993, pp. 238-253. doi:10.1006/jcat.1993.1327
[71] E. Iglesia, D. G. Barton, S. L. Soled, S. Miseo, J. E. Baumgartner, W. E. Gates, G. A. Fuentes and G. D. Meitzner, “Selective Isomerization of Alkanes on Supported Tungsten Oxide Acids,” Studies in Surface Science and Catalysis, Vol. 101, 1996, pp. 533-542. doi:10.1016/S0167-2991(96)80264-3
[72] R. A. Comelli, Z. R. Finelli, S. R. Vaudagna and N. S. Figoli, “Hydroisomerization of n-Hexane on Pt/SO42 ZrO2: Effect of Total and Hydrogen Partial Pressure,” Catalysis Letters, Vol. 45, No. 3-4, 1997, pp. 227-231. doi:10.1023/A:1019088217236

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.