Synthesis, Characterization, and Activity of Tin Oxide Nanoparticles: Influence of Solvothermal Time on Photocatalytic Degradation of Rhodamine B

DOI: 10.4236/mrc.2013.23A003   PDF   HTML     6,083 Downloads   14,269 Views   Citations


The SnO2 spheres-like nanoparticles have been successfully synthesized by a microwave solvothermal method, in which SnCl2·2H2O, poly(vinylpyrrolidone) PVP, H2O2 and NaOH as raw materials. The as-synthesized products have been characterized by X-ray diffraction, scanning electron microscope, and UV/Vis/NIR spectrophotometer. Photocatalytic activities of the samples have been evaluated by the degradation of rhodamine B (RhB) under UV-light illumination. Results showed that these products with diameter about 1 - 2 μm, and when the reaction time prolong, the surface of the SnO2 spheres will change to rough and then smooth when the time even longer. The product with nanorods on its surface shows the higher photocatalytic activity and red shift in the UV-vis absorption, which are relative to the unique structure. At last we studied the electron transfer reactions during photo-oxidation of RhB.

Share and Cite:

Z. He and J. Zhou, "Synthesis, Characterization, and Activity of Tin Oxide Nanoparticles: Influence of Solvothermal Time on Photocatalytic Degradation of Rhodamine B," Modern Research in Catalysis, Vol. 2 No. 3A, 2013, pp. 13-18. doi: 10.4236/mrc.2013.23A003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chemical Reviews, Vol. 105, No. 4, 2005, pp, 1025-1102. doi:10.1021/cr030063a
[2] X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chemical Reviews, Vol. 107, No. 7, 2007, pp, 2891-2959. doi:10.1021/cr0500535
[3] Z. He, W. Que, J. Chen, X. Yin, Y. He, J. Ren, “Photocatalytic Degradation of Methyl Orange over Nitrogen— Fluorine Codoped TiO2 Nanobelts Prepared by Solvothermal Synthesis,” ACS Applied Materials & Interfaces, Vol. 4, No. 12, 2012, pp. 6816-6826. doi:10.1021/am3019965
[4] J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang and L. Z. Zhang, “Effects of F Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders,” Chemistry of Materials, Vol. 14, No. 9, 2002, pp. 3808-3816. doi:10.1021/cm020027c
[5] J. Ng, J. H. Pan and D. D. Sun, “Hierarchical Assembly of Anatase Nanowhiskers and Evaluation of Their Photocatalytic Efficiency in Comparison to Various One-Dimensional TiO2 Nanostructures,” Journal of Materials Chemistry, Vol. 21, No. 32, 2011, pp. 11844-11853. doi:10.1039/c1jm11088h
[6] Z. He, W. Que, Y. He, J. Chen, H. Xie and G. Wang, “Nanosphere Assembled Mesoporous Titanium Dioxide with Advanced Photocatalystic Activity Using Absorbent Cotton as Template,” Journal of Materials Science, Vol. 47, No. 20, 2012, pp. 7210-7216. doi:10.1007/s10853-012-6667-9
[7] C. A. Martinez-Huitle and E. Brillas, “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review,” Applied Catalysis B: Environmental, Vol. 87, No. 4-5, 2009, pp. 105-145. doi:10.1016/j.apcatb.2008.09.017
[8] H. J. Zhang, G. H. Chen and D. W. Bahnemann, “Photoelectrocatalytic Materials for Environmental Applications,” Journal of Materials Chemistry, Vol. 19, No. 29, 2009, pp. 5089-5121. doi:10.1039/b821991e
[9] H. J. Wang, F. Q. Sun, Y. Zhang, K. Y. Gu, W. Chen and W. S. Li, “Photochemical Construction of Free-Standing Sn-Filled SnO2 Nanotube Arrayon a Solution Surface for Flexible Use in Photocatalysis,” Journal of Materials Chemistry, Vol. 21, No. 33, 2011, pp. 12407-12413. doi:10.1039/c1jm10887e
[10] Z. He and W. Que, “Enhanced Photocatalytic Activity of N-Cetyl-N,N,N-Trimethyl Ammonium Bromide-Assisted Solvothermal Grown Fluff-Like ZnO Nanoparticles,” Journal of Nanoengineering and Nanomanufacturing, Vol. 2, No. 1, 2012, pp. 17-21. doi:10.1166/jnan.2012.1043
[11] M. Dimitrov, T. Tsoncheva, S. Shao and R. Kohn, “Novel Preparation of Nanosized Mesoporous SnO2 Powders: Physicochemical and Catalytic Properties,” Applied Catalysis B: Environmental, Vol. 94, No. 1-2, 2010, pp, 158-165. doi:10.1016/j.apcatb.2009.11.004
[12] S. S. Wu, H. Q. Cao, S. F. Yin, X. W. Liu and X. R. Zhang, “Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals,” The Journal of Physical Chemistry C, Vol. 113, No. 41, 2009, pp. 17893-17898. doi:10.1021/jp9068762
[13] Y. T. Han, X. Wu, Y. L. Ma, L. H. Gong, F. Y. Qu and H. J. Fan, “Porous SnO2 Nanowire Bundles for Photocatalyst and Li Ion Battery Applications,” CrystEngComm, Vol. 13, No. 10, 2011, pp. 3506-3510. doi:10.1039/c1ce05171g
[14] Z. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang and J. Li, “Enhanced Photocatalytic Properties of Mesoporous SnO2 Induced by Low Concentration ZnO Doping,” Crystal Growth & Design, Vol. 7, No. 9, 2007, pp. 1722-1725. doi:10.1021/cg060801z
[15] Z. He, W. Que, H. Xie, J. Chen, Y. Yuan and P. Sun, “Facile Synthesis of Self-Sensitized TiO2 Photocataslysts and Their Higher Photocatalytic Activity,” Journal of The American Ceramic Society, Vol. 95, No. 12, 2012, pp, 3941-3946. doi:10.1111/j.1551-2916.2012.05426.x
[16] Z. He, W. Que, Y. He, J. Chen, J. Hu, H. Javed, Y. Ji, X. Li and D. Fei, “Electrochemical Behavior and Photocatalytic Performance of Nitrogen-Doped TiO2 Nanotubes Arrays Powders Prepared by Combining Anodization with Solvothermal Process,” Ceramics International, Vol. 39, No. 5, 2013, pp. 5545-5552. doi:10.1016/j.ceramint.2012.12.068
[17] Z. He, W. Que, J. Chen, Y. He and G. Wang, “Surface Chemical Analysis on the Carbon-Doped Mesoporous TiO2 Nanoparticles after Post-thermal Treatment: XPS and FTIR Characterization,” Journal of Physics and Chemistry of Solids, Vol. 74, No. 7, 2013, pp. 924-928. doi:10.1016/j.jpcs.2013.02.001
[18] Z. He, Z. Zhu, J. Li, N. Wei and J. Zhou, “Characterization and Activity of Mesoporous Titanium Dioxide beads with High Surface Areas and Controllable Pore Sizes,” Journal of Hazardous Materials, Vol. 190, No. 1-3, 2011, pp, 133-139. doi:10.1016/j.jhazmat.2011.03.011
[19] E. M. Seftel, E. Popovici, M. Mertens, E. A. Stefaniak, R. V. Grieken, P. Cool and E. F. Vansant, “SnIV-Containing Layered Double Hydroxides as Precursors for Nano-Sized ZnO/SnO2 Photocatalysts,” Applied Catalysis B: Environmental, Vol. 84, No. 3-4, 2008, pp. 699-705. doi:10.1016/j.apcatb.2008.06.006
[20] C. Wang, J. C. Zhao, X. M. Wang, B. X. Mai, G. Y. Sheng, P. A. Peng and J. M. Fu, “Preparation, Characterization and Photocatalytic Activity of Nano-Sized ZnO/SnO2 Coupled Photocatalysts,” Applied Catalysis B: Environmental, Vol. 39, No. 3, 2002, pp. 269-279. doi:10.1016/S0926-3373(02)00115-7
[21] N. Wang, J. X. Xu and L. H. Guan, “Synthesis and Enhanced Photocatalytic Activity of Tin Oxide Nanoparticles Coated on Multi-Walled Carbon Nanotube,” Materials Research Bulletin, Vol. 46, No. 9, 2011, pp, 1372-1376. doi:10.1016/j.materresbull.2011.05.014
[22] L. R. Zheng, Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei and J. F. Zhu, “Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity,” Inorganic Chemistry, Vol. 48, No. 5, 2009, pp. 1819-1825. doi:10.1021/ic802293p
[23] Z. Zhu, J. Zhou and Z. He, “Effects of Heat Treatment Scheme on Luminescence Properties and Photocatalytic Activity of Mo2O3/TiO2 Nanowire Prepared via Solvothermal Method,” Journal of Nanoengineering and Nanomanufacturing, Vol. 2, No. 1, 2012, pp. 80-84. doi:10.1166/jnan.2012.1055

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.