Air Pollution and Epigenetics

DOI: 10.4236/jep.2013.48A1014   PDF   HTML     5,059 Downloads   8,235 Views   Citations


Air pollution is a global problem with far-reaching environmental impacts. Exposure has been linked to a number of different adverse health effects. Understanding the impact of ambient air pollution is complicated given the diversity of both the pollutants involved as well as the complexity of associated diseases. While we see a positive correlation between levels of exposure and health issues, the mechanisms of pathogenesis are still under investigation. The study of epigenetic regulation as it relates to disease is emerging as an exciting new way to interpret the possible effects of ambient air pollution on DNA. In this review we provide an overview of epigenetic modifications as well as an analysis of how epigenetic mechanisms are involved in the adverse effects associated with the most common components of ambient air pollution.

Share and Cite:

A. Syed, K. Hew, A. Kohli, G. Knowlton and K. Nadeau, "Air Pollution and Epigenetics," Journal of Environmental Protection, Vol. 4 No. 8A, 2013, pp. 114-122. doi: 10.4236/jep.2013.48A1014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. J. Cohen, et al., “The Global Burden of Disease Due to Outdoor Air Pollution,” Journal of Toxicology and Environmental Health, Part A: Current Issues, Vol. 68, No. 13-14, 2005, pp. 1301-1307. doi:10.1080/15287390590936166
[2] N. Kunzli, et al., “Public-Health Impact of Outdoor and Traffic-Related Air Pollution: A European Assessment,” Lancet, Vol. 356, No. 9232, 2000, pp. 795-801. doi:10.1016/S0140-6736(00)02653-2
[3] J. M. Baldasano, E. Valera and P. Jimenez, “Air Quality Data from Large Cities,” Science of the Total Environment, Vol. 307, No. 1-3, 2003, pp. 141-165. doi:10.1016/S0048-9697(02)00537-5
[4] J. W. Holloway, et al., “Genomics and the Respiratory Effects of Air Pollution Exposure,” Respirology, Vol. 17, No. 4, 2012, pp. 590-600. doi:10.1111/j.1440-1843.2012.02164.x
[5] C. Carlsten and E. Melen, “Air Pollution, Genetics, and Allergy: An Update,” Current Opinion in Allergy & Clinical Immunology, Vol. 12, No. 5, 2012, pp. 455-460. doi:10.1097/ACI.0b013e328357cc55
[6] K. Ito, et al., “Cigarette Smoking Reduces Histone Deacetylase 2 Expression, Enhances Cytokine Expression, and Inhibits Glucocorticoid Actions in Alveolar Macrophages,” FASEB Journal, Vol. 15, No. 6, 2001, pp. 1110-1112.
[7] L. Corson, et al., “Prenatal Allergen and Diesel Exhaust Exposure and Their Effects on Allergy in Adult Offspring Mice,” Allergy, Asthma & Clinical Immunology, Vol. 6, No. 1, 2010, p. 7. doi:10.1186/1710-1492-6-7
[8] F. Perera, et al., “Relation of DNA Methylation of 5’-CpG Island of ACSL3 to Transplacental Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Childhood Asthma,” PLoS One, Vol. 4, No. 2, 2009, p. e4488. doi:10.1371/journal.pone.0004488
[9] K. Nadeau, C. McDonald-Hyman, B. Pratt, B. Noth, K. Hammond, J. Balmes and I. Tager, “Ambient Air Pollution Impairs Regulatory T-Cell Function in Asthma,” Journal of Allergy and Clinical Immunology, Vol. 126, No. 4, 2010, pp. 845-852.
[10] L. Tarantini, et al., “Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation,” Environmental Health Perspectives, Vol. 117, No. 2, 2009, pp. 217-222.
[11] C. V. Breton, et al., “DNA Methylation in the Arginase-Nitric Oxide Synthase Pathway Is Associated with Exhaled Nitric Oxide in Children with Asthma,” American Journal of Respiratory and Critical Care Medicine, Vol. 184, No. 2, 2011, pp. 191-197. doi:10.1164/rccm.201012-2029OC
[12] A. Baccarelli, et al., “Rapid DNA Methylation Changes after Exposure to Traffic Particles,” American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 7, 2009, pp. 572-578. doi:10.1164/rccm.200807-1097OC
[13] S. Lovinsky-Desir and R. L. Miller, “Epigenetics, Asthma, and Allergic Diseases: A Review of the Latest Advancements,” Current Allergy and Asthma Reports, Vol. 12, No. 3, 2012, pp. 211-220. doi:10.1007/s11882-012-0257-4
[14] Z. D. Smith and A. Meissner, “DNA Methylation: Roles in Mammalian Development,” Nature Reviews: Genetics, Vol. 14, No. 3, 2013, pp. 204-220. doi:10.1038/nrg3354
[15] G. E. Zentner and S. Henikoff, “Regulation of Nucleosome Dynamics by Histone Modifications,” Nature Structural & Molecular Biology, Vol. 20, No. 3, 2013, pp. 259-266. doi:10.1038/nsmb.2470
[16] I. V. Yang and D. A. Schwartz, “Epigenetic Mechanisms and the Development of Asthma,” The Journal of Allergy and Clinical Immunology, Vol. 130, No. 6, 2012, pp. 1243-1255. doi:10.1016/j.jaci.2012.07.052
[17] D. P. Bartel, “MicroRNAs: Genomics, Biogenesis, Mechanism, and Function,” Cell, Vol. 116, No. 2, 2004, pp. 281-297. doi:10.1016/S0092-8674(04)00045-5
[18] C. Z. Chen, et al., “MicroRNAs Modulate Hematopoietic Lineage Differentiation,” Science, Vol. 303, No. 5654, 2004, pp. 83-86. doi:10.1126/science.1091903
[19] W. P. Kloosterman, et al., “Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development,” PLoS Biology, Vol. 5, No. 8, 2007, p. e203. doi:10.1371/journal.pbio.0050203
[20] C. Fernandez-Hernando, et al., “MicroRNAs in Metabolic Disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 33, No. 2, 2013, pp. 178-185. doi:10.1161/ATVBAHA.112.300144
[21] D. Quiat and E. N. Olson, “MicroRNAs in Cardiovascular Disease: From Pathogenesis to Prevention and Treatment,” The Journal of Clinical Investigation, Vol. 123, No. 1, 2013, pp. 11-18. doi:10.1172/JCI62876
[22] C. Baer, R. Claus and C. Plass, “Genome-Wide Epigenetic Regulation of miRNAs in Cancer,” Cancer Research, Vol. 73, No. 2, 2013, pp. 473-477. doi:10.1158/0008-5472.CAN-12-3731
[23] S. P. Nana-Sinkam, et al., “Integrating the MicroRNome into the Study of Lung Disease,” American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 1, 2009, pp. 4-10. doi:10.1164/rccm.200807-1042PP
[24] R. Schickel, et al., “MicroRNAs: Key Players in the Immune System, Differentiation, Tumorigenesis and Cell Death,” Oncogene, Vol. 27, No. 45, 2008, pp. 5959-5974. doi:10.1038/onc.2008.274
[25] N. Yanaihara, et al., “Unique microRNA Molecular Profiles in Lung Cancer Diagnosis and Prognosis,” Cancer Cell, Vol. 9, No. 3, 2006, pp. 189-198. doi:10.1016/j.ccr.2006.01.025
[26] S. Vardoulakis, et al., “Impact and Uncertainty of a Traffic Management Intervention: Population Exposure to Polycyclic Aromatic Hydrocarbons,” Science of the Total Environment, Vol. 394, No. 2-3, 2008, pp. 244-251. doi:10.1016/j.scitotenv.2008.01.037
[27] H. Shen, et al., “Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions,” Environmental Science & Technology, Vol. 47, No. 12, 2013, pp. 6415-6424. doi:10.1021/es400857z
[28] H. Duan, et al., “Global and MGMT Promoter Hypomethylation Independently Associated with Genomic Instability of Lymphocytes in Subjects Exposed to High-Dose Polycyclic Aromatic Hydrocarbon,” Archives of Toxicology, 2013. (in Press) doi:10.1007/s00204-013-1046-0
[29] H. B. Huang, et al., “Exposure to Heavy Metals and Polycyclic Aromatic Hydrocarbons and DNA Damage in Taiwanese Traffic Conductors,” Cancer Epidemiology, Biomarkers & Prevention, Vol. 22, No. 1, 2013, pp. 102-108. doi:10.1158/1055-9965.EPI-12-0706
[30] S. Pavanello, et al., “Shorter Telomere Length in Peripheral Blood Lymphocytes of Workers Exposed to Polycyclic Aromatic Hydrocarbons,” Carcinogenesis, Vol. 31, No. 2, 2010, pp. 216-221. doi:10.1093/carcin/bgp278
[31] B. Ouyang, et al., “Hypomethylation of Dual Specificity Phosphatase 22 Promoter Correlates with Duration of Service in Firefighters and Is Inducible by Low-Dose Benzo[a]Pyrene,” Journal of Occupational & Environmental Medicine, Vol. 54, No. 7, 2012, pp. 774-780. doi:10.1097/JOM.0b013e31825296bc
[32] N. M. Al-Daghri, et al., “Polycyclic Aromatic Hydrocarbon Exposure and Pediatric Asthma in Children: A Case-Control Study,” Environmental Health, Vol. 12, 2013, p. 1. doi:10.1186/1476-069X-12-1
[33] S. M. Ho, et al., “Environmental Epigenetics and Its Implication on Disease Risk and Health Outcomes,” ILAR Journal, Vol. 53, No. 3-4, 2012, pp. 289-305. doi:10.1093/ilar.53.3-4.289
[34] I. W. Jarvis, et al., “Persistent Activation of DNA Damage Signaling in Response to Complex Mixtures of PAHs in Air Particulate Matter,” Toxicology and Applied Pharmacology, Vol. 266, No. 3, 2013, pp. 408-418. doi:10.1016/j.taap.2012.11.026
[35] W. Y. Tang, et al., “Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5’-CpG Methylation of Interferon-Gamma in Cord White Blood Cells,” Environmental Health Perspectives, Vol. 120, No. 8, 2012, pp. 1195-1200. doi:10.1289/ehp.1103744
[36] K. Nadeau, et al., “Ambient Air Pollution Impairs Regulatory T-Cell Function in Asthma,” Journal of Allergy and Clinical Immunology, Vol. 126, No. 4, 2010, pp. 845-852.
[37] E. A. Stevens, J. D. Mezrich and C. A. Bradfield, “The Aryl Hydrocarbon Receptor: A Perspective on Potential Roles in the Immune System,” Immunology, Vol. 127, No. 3, 2009, pp. 299-311. doi:10.1111/j.1365-2567.2009.03054.x
[38] J. Liu, et al., “Epigenetically Mediated Pathogenic Effects of Phenanthrene on Regulatory T Cells,” Journal of Toxicology, Vol. 2013, 2013, Article ID: 967029.
[39] M. Akdis, et al., “Immune Responses in Healthy and Allergic Individuals Are Characterized by a Fine Balance between Allergen-Specific T Regulatory 1 and T Helper 2 Cells,” The Journal of Experimental Medicine, Vol. 199, No. 11, 2004, pp. 1567-1575. doi:10.1084/jem.20032058
[40] B. Fauroux, et al., “Ozone: A Trigger for Hospital Pediatric Asthma Emergency Room Visits,” Pediatric Pulmonology, Vol. 30, No. 1, 2000, pp. 41-46. doi:10.1002/1099-0496(200007)30:1<41::AID-PPUL7>3.0.CO;2-4
[41] K. Moore, et al., “Ambient Ozone Concentrations Cause Increased Hospitalizations for Asthma in Children: An 18-Year Study in Southern California,” Environmental Health Perspectives, Vol. 116, No. 8, 2008, pp. 1063-1070. doi:10.1289/ehp.10497
[42] T. Frischer, et al., “Lung Function Growth and Ambient Ozone: A Three-Year Population Study in School Children,” American Journal of Respiratory and Critical Care Medicine, Vol. 160, No. 2, 1999, pp. 390-396. doi:10.1164/ajrccm.160.2.9809075
[43] M. L. Bell and F. Dominici, “Effect Modification by Community Characteristics on the Short-Term Effects of Ozone Exposure and Mortality in 98 US Communities,” American Journal of Epidemiology, Vol. 167, No. 8, 2008, pp. 986-997. doi:10.1093/aje/kwm396
[44] J. W. Hollingsworth, et al., “Ozone Activates Pulmonary Dendritic Cells and Promotes Allergic Sensitization through a Toll-Like Receptor 4-Dependent Mechanism,” Journal of Allergy and Clinical Immunology, Vol. 125, No. 5, 2010, pp. 1167-1170. doi:10.1016/j.jaci.2010.03.001
[45] E. Koike and T. Kobayashi, “Ozone Exposure Enhances Antigen-Presenting Activity of Interstitial Lung Cells in Rats,” Toxicology, Vol. 196, No. 3, 2004, pp. 217-227. doi:10.1016/j.tox.2003.10.007
[46] J. C. Lay, et al., “Ozone Enhances Markers of Innate Immunity and Antigen Presentation on Airway Monocytes in Healthy Individuals,” Journal of Allergy and Clinical Immunology, Vol. 120, No. 3, 2007, pp. 719-722. doi:10.1016/j.jaci.2007.05.005
[47] J. W. Hollingsworth 2nd, et al., “The Role of Toll-Like Receptor 4 in Environmental Airway Injury in Mice,” American Journal of Respiratory and Critical Care Medicine, Vol. 170, No. 2, 2004, pp. 126-132. doi:10.1164/rccm.200311-1499OC
[48] S. R. Kleeberger, et al., “Linkage Analysis of Susceptibility to Ozone-Induced Lung Inflammation in Inbred Mice,” Nature Genetics, Vol. 17, No. 4, 1997, pp. 475-478. doi:10.1038/ng1297-475
[49] K. Takahashi, et al., “Epigenetic Regulation of TLR4 Gene Expression in Intestinal Epithelial Cells for the Maintenance of Intestinal Homeostasis,” The Journal of Immunology, Vol. 183, No. 10, 2009, pp. 6522-6529. doi:10.4049/jimmunol.0901271
[50] M. Ceppi, et al., “MicroRNA-155 Modulates the Interleukin-1 Signaling Pathway in Activated Human Monocyte-Derived Dendritic Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 8, 2009, pp. 2735-2740. doi:10.1073/pnas.0811073106
[51] K. D. Taganov, et al., “NF-KappaB-Dependent Induction of MicroRNA miR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 33, 2006, pp. 12481-12486. doi:10.1073/pnas.0605298103
[52] M. Rossato, et al., “IL-10-Induced MicroRNA-187 Negatively Regulates TNF-Alpha, IL-6, and IL-12p40 Production in TLR4-Stimulated Monocytes,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 45, 2012, pp. E3101-E3110. doi:10.1073/pnas.1209100109
[53] L. Lai, et al., “MicroRNA-92a Negatively Regulates Toll-Like Receptor (TLR)-Triggered Inflammatory Response in Macrophages by Targeting MKK4 Kinase,” The Journal of Biological Chemistry, Vol. 288, No. 11, 2013, pp. 7956-7967. doi:10.1074/jbc.M112.445429
[54] M. A. Nahid, et al., “Regulation of TLR2-Mediated Tolerance and Cross-Tolerance through IRAK4 Modulation by miR-132 and miR-212,” The Journal of Immunology, Vol. 190, No. 3, 2013, pp. 1250-1263. doi:10.4049/jimmunol.1103060
[55] D. Li, et al., “TLR4 Signaling Induces the Release of Microparticles by Tumor Cells that Regulate Inflammatory Cytokine IL-6 of Macrophages via MicroRNA Let-7b,” Oncoimmunology, Vol. 1, No. 5, 2012, pp. 687-693. doi:10.4161/onci.19854
[56] L. A. O’Neill, F. J. Sheedy and C. E. McCoy, “Micro-RNAs: The Fine-Tuners of Toll-Like Receptor Signalling,” Nature Reviews Immunology, Vol. 11, No. 3, 2011, pp. 163-175. doi:10.1038/nri2957
[57] S. Akira and K. Takeda, “Toll-Like Receptor Signalling,” Nature Reviews Immunology, Vol. 4, No. 7, 2004, pp. 499-511. doi:10.1038/nri1391
[58] E. Tili, et al., “Modulation of miR-155 and miR-125b Levels Following Lipopolysaccharide/TNF-Alpha Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock,” The Journal of Immunology, Vol. 179, No. 8, 2007, pp. 5082-5089.
[59] J. Liu, et al., “Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production in Vivo,” Toxicological Sciences, Vol. 102, No. 1, 2008, pp. 76-81. doi:10.1093/toxsci/kfm290
[60] T. Sofer, et al., “Exposure to Airborne Particulate Matter Is Associated with Methylation Pattern in the Asthma Pathway,” Epigenomics, Vol. 5, No. 2, 2013, pp. 147-154. doi:10.2217/epi.13.16
[61] J. Saito, et al., “Exhaled Nitric Oxide as a Marker of Airway Inflammation for an Epidemiologic Study in Schoolchildren,” Journal of Allergy and Clinical Immunology, Vol. 114, No. 3, 2004, pp. 512-516. doi:10.1016/j.jaci.2004.05.033
[62] R. J. Delfino, et al., “Personal and Ambient Air Pollution is Associated with Increased Exhaled Nitric Oxide in Children with Asthma,” Environmental Health Perspectives, Vol. 114, No. 11, 2006, pp. 1736-1743.
[63] A. Barraza-Villarreal, et al., “Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren,” Environmental Health Perspectives, Vol. 116, No. 6, 2008, pp. 832-838. doi:10.1289/ehp.10926
[64] M. T. Salam, et al., “Genetic and Epigenetic Variations in Inducible Nitric Oxide Synthase Promoter, Particulate Pollution, and Exhaled Nitric Oxide Levels in Children,” Journal of Allergy and Clinical Immunology, Vol. 129, No. 1, 2012, pp. 232-239.
[65] C. Yauk, et al., “Germ-Line Mutations, DNA Damage, and Global Hypermethylation in Mice Exposed to Particulate Air Pollution in an Urban/Industrial Location,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 2, 2008, pp. 605-610. doi:10.1073/pnas.0705896105
[66] D. Cao, P. A. Bromberg and J. M. Samet, “COX-2 Expression Induced by Diesel Particles Involves Chromatin Modification and Degradation of HDAC1,” American Journal of Respiratory Cell and Molecular Biology, Vol. 37, No. 2, 2007, pp. 232-239. doi:10.1165/rcmb.2006-0449OC
[67] V. Motta, et al., “Integrative Analysis of miRNA and Inflammatory Gene Expression after Acute Particulate Matter Exposure,” Toxicological Sciences, Vol. 132, No. 2, 2013, pp. 307-316. doi:10.1093/toxsci/kft013
[68] Centers for Disease Control and Prevention, “The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General,” Office on Smoking and Health, Atlanta, 2006.
[69] Y. F. Li, et al., “Maternal and Grandmaternal Smoking Patterns Are Associated with Early Childhood Asthma,” Chest, Vol. 127, No. 4, 2005, pp. 1232-1241. doi:10.1378/chest.127.4.1232
[70] C. V. Breton, et al., “Prenatal Tobacco Smoke Exposure Affects Global and Gene-Specific DNA Methylation,” American Journal of Respiratory and Critical Care Medicine, Vol. 180, No. 5, 2009, pp. 462-467. doi:10.1164/rccm.200901-0135OC
[71] R. Guerrero-Preston, et al., “Global DNA Hypomethylation Is Associated with in Utero Exposure to Cotinine and Perfluorinated Alkyl Compounds,” Epigenetics, Vol. 5, No. 6, 2010, pp. 539-546. doi:10.4161/epi.5.6.12378
[72] C. S. Wilhelm-Benartzi, et al., “In Utero Exposures, Infant Growth, and DNA Methylation of Repetitive Elements and Developmentally Related Genes in Human Placenta,” Environmental Health Perspectives, Vol. 120, No. 2, 2012, pp. 296-302. doi:10.1289/ehp.1103927
[73] S. K. Murphy, et al., “Gender-Specific Methylation Differences in Relation to Prenatal Exposure to Cigarette Smoke,” Gene, Vol. 494, No. 1, 2012, pp. 36-43. doi:10.1016/j.gene.2011.11.062
[74] M. Suter, et al., “In Utero Tobacco Exposure Epigenetically Modifies Placental CYP1A1 Expression,” Metabolism, Vol. 59, No. 10, 2010, pp. 1481-1490. doi:10.1016/j.metabol.2010.01.013
[75] B. R. Joubert, et al., “450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy,” Environmental Health Perspectives, Vol. 120, No. 10, 2012, pp. 1425-1431.
[76] C. V. Breton, M. T. Salam and F. D. Gilliland, “Heritability and Role for the Environment in DNA Methylation in AXL Receptor Tyrosine Kinase,” Epigenetics, Vol. 6, No. 7, 2011, pp. 895-898. doi:10.4161/epi.6.7.15768
[77] M. A. Maccani, et al., “Maternal Cigarette Smoking during Pregnancy Is Associated with Downregulation of miR-16, miR-21, and miR-146a in the Placenta,” Epigenetics, Vol. 5, No. 7, 2010, pp. 583-589. doi:10.4161/epi.5.7.12762
[78] S. Wangsri, et al., “Patterns and Possible Roles of LINE-1 Methylation Changes in Smoke-Exposed Epithelia,” PLoS ONE, Vol. 7, No. 9, 2012, Article ID: e45292. doi:10.1371/journal.pone.0045292
[79] A. L. Durham, C. Wiegman and I. M. Adcock, “Epigenetics of Asthma,” Biochimica et Biophysica Acta, Vol. 1810, No. 11, 2011, pp. 1103-1109. doi:10.1016/j.bbagen.2011.03.006
[80] M. Talikka, et al., “Genomic Impact of Cigarette Smoke, with Application to Three Smoking-Related Diseases,” Critical Reviews in Toxicology, Vol. 42, No. 10, 2012, pp. 877-889. doi:10.3109/10408444.2012.725244
[81] T. Vaissiere, et al., “Quantitative Analysis of DNA Methylation Profiles in Lung Cancer Identifies Aberrant DNA Methylation of Specific Genes and Its Association with Gender and Cancer Risk Factors,” Cancer Research, Vol. 69, No. 1, 2009, pp. 243-252. doi:10.1158/0008-5472.CAN-08-2489
[82] F. Liu, et al., “Epigenomic Alterations and Gene Expression Profiles in Respiratory Epithelia Exposed to Cigarette Smoke Condensate,” Oncogene, Vol. 29, No. 25, 2010, pp. 3650-3664. doi:10.1038/onc.2010.129
[83] B. Word, et al., “Cigarette Smoke Condensate Induces Differential Expression and Promoter Methylation Profiles of Critical Genes Involved in Lung Cancer in NL-20 Lung Cells in Vitro: Short-Term and Chronic Exposure,” International Journal of Toxicology, Vol. 32, No. 1, 2013, pp. 23-31. doi:10.1177/1091581812465902
[84] D. Volanis, et al., “Molecular Mechanisms in Urinary Bladder Carcinogenesis,” Journal of Balkan Union of Oncology, Vol. 16, No. 4, 2011, pp. 589-601.
[85] M. Brait, et al., “Genome-Wide Methylation Profiling and the PI3K-AKT Pathway Analysis Associated with Smoking in Urothelial Cell Carcinoma,” Cell Cycle, Vol. 12, No. 7, 2013, pp. 1058-1070. doi:10.4161/cc.24050
[86] D. Limsui, et al., “Cigarette Smoking and Colorectal Cancer Risk by Molecularly Defined Subtypes,” Journal of the National Cancer Institute, Vol. 102, No. 14, 2010, pp. 1012-1022. doi:10.1093/jnci/djq201
[87] E. S. Wan, et al., “Cigarette Smoking Behaviors and Time Since Quitting Are Associated with Differential DNA Methylation across the Human Genome,” Human Molecular Genetics, Vol. 21, No. 13, 2012, pp. 3073-3082. doi:10.1093/hmg/dds135
[88] H. Yao and I. Rahman, “Role of Histone Deacetylase 2 in Epigenetics and Cellular Senescence: Implications in Lung Inflammaging and COPD,” American Journal of Physiology—Lung Cellular and Molecular Physiology, Vol. 303, No. 7, 2012, pp. L557-L566. doi:10.1152/ajplung.00175.2012
[89] M. Stapleton, et al., “Smoking and Asthma,” The Journal of the American Board of Family Medicine, Vol. 24, No. 3, 2011, pp. 313-322. doi:10.3122/jabfm.2011.03.100180
[90] D. Adenuga, et al., “Histone Deacetylase 2 Is Phosphorylated, Ubiquitinated, and Degraded by Cigarette Smoke,” American Journal of Respiratory Cell and Molecular Biology, Vol. 40, No. 4, 2009, pp. 464-473. doi:10.1165/rcmb.2008-0255OC
[91] G. O. Osoata, et al., “Nitration of Distinct Tyrosine Residues Causes Inactivation of Histone Deacetylase 2,” Biochemical and Biophysical Research Communications, Vol. 384, No. 3, 2009, pp. 366-371. doi:10.1016/j.bbrc.2009.04.128
[92] T. Toyooka and Y. Ibuki, “Cigarette Sidestream Smoke Induces Phosphorylated Histone H2AX,” Mutation Research, Vol. 676, No. 1-2, 2009, pp. 34-40. doi:10.1016/j.mrgentox.2009.03.002
[93] B. S. Kim, et al., “Xanthine Oxidoreductase Is a Critical Mediator of Cigarette Smoke-Induced Endothelial Cell DNA Damage and Apoptosis,” Free Radical Biology & Medicine, Vol. 60, 2013, pp. 336-346. doi:10.1016/j.freeradbiomed.2013.01.023
[94] I. K. Sundar, et al., “Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-KappaB-Dependent Genes,” PLoS ONE, Vol. 7, No. 2, 2012, Article ID: e31378. doi:10.1371/journal.pone.0031378
[95] S. Chung, et al., “NF-KappaB Inducing Kinase, NIK Mediates Cigarette Smoke/TNFalpha-Induced Histone Acetylation and Inflammation through Differential Activation of IKKs,” PLoS ONE, Vol. 6, No. 8, 2011, Article ID: e23488. doi:10.1371/journal.pone.0023488
[96] M. Li, et al., “Effect of Erythromycin on Cigarette-Induced Histone Deacetylase Protein Expression and Nuclear Factor-KappaB Activity in Human Macrophages in Vitro,” International Immunopharmacology, Vol. 12, No. 4, 2012, pp. 643-650. doi:10.1016/j.intimp.2011.12.022
[97] K. Takahashi, et al., “Cigarette Smoking Substantially Alters Plasma MicroRNA Profiles in Healthy Subjects,” Toxicology and Applied Pharmacology, 2013. (in Press) doi:10.1016/j.taap.2013.05.018
[98] F. Schembri, et al., “MicroRNAs as Modulators of Smoking-Induced Gene Expression Changes in Human Airway Epithelium,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 7, 2009, pp. 2319-2324. doi:10.1073/pnas.0806383106
[99] J. W. Graff, et al., “Cigarette Smoking Decreases Global MicroRNA Expression in Human Alveolar Macro-phages,” PLoS ONE, Vol. 7, No. 8, 2012, Article ID: e44066. doi:10.1371/journal.pone.0044066
[100] S. Xi, et al., “Cigarette Smoke Induces C/EBP-Beta-Mediated Activation of miR-31 in Normal Human Respiratory Epithelia and Lung Cancer Cells,” PLoS ONE, Vol. 5, No. 10, 2010, Article ID: e13764. doi:10.1371/journal.pone.0013764
[101] S. Xi, et al., “Cigarette Smoke Mediates Epigenetic Repression of miR-487b during Pulmonary Carcino-Genesis,” The Journal of Clinical Investigation, Vol. 123, No. 3, 2013, pp. 1241-1261. doi:10.1172/JCI61271
[102] T. K. Ng, et al., “Nicotine Alters MicroRNA Expression and Hinders Human Adult Stem Cell Regenerative Potential,” Stem Cells and Development, Vol. 22, No. 5, 2013, pp. 781-790. doi:10.1089/scd.2012.0434
[103] N. Rabinovitch, et al., “The Response of Children with Asthma to Ambient Particulate Is Modified by Tobacco Smoke Exposure,” American Journal of Respiratory and Critical Care Medicine, Vol. 184, No. 12, 2011, pp. 1350-1357. doi:10.1164/rccm.201010-1706OC
[104] A. Kohli, et al., “Secondhand Smoke in Combination with Ambient Air Pollution Exposure Is Associated with Increasedx CpG Methylation and Decreased Expression of IFN-Gamma in T Effector Cells and Foxp3 in T Regulatory Cells in Children,” Clinical Epigenetics, Vol. 4, No. 1, 2012, p. 17. doi:10.1186/1868-7083-4-17

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.