Protocol for maximizing the triglycerides-enriched lipids production from Dunaliella salina SA32007 biomass, isolated from the Salar de Atacama (Northern Chile)

DOI: 10.4236/abb.2013.48110   PDF   HTML     4,021 Downloads   6,431 Views   Citations


This paper reports the effects of different culture conditions for Dunaliella salina SA32007 from Salar de Atacama (second Region, northern ofChile) over biomass, lipid production and triglycerides synthesis. A maximum value of microalgae density (8.2 × 109 Cells/L) and an intrinsic growth rate (0.17 d-1), were obtained using a culture with 0.5 mol/L of NaCl and a nitrogen/phosphorous (N/P) limitation of 14/1. The triglycerides production was significantly favoured under nitrogen deficiency conditions (Mann-Whitney test; p = 0.0043). However there was a nitrogen-limiting threshold for the stimulation and accumulation of triglycerides (N/P: 14/1), lower than that limit, these compounds would not be accumulated. It was also observed that triglyceride content was not proportional to the total lipid content and the maximum number of cells. The aeration system employed stimulated the growth and synthesis of structural organic molecules. Regarding microalgae growth stage subjected to nitrogen deficiency, when the deficit was applied before the lag phase, the negative effect on the biomass and the triglycerides production decreased.

Share and Cite:

Arias-Forero, D. , Hayashida, G. , Aranda, M. , Araya, S. , Portilla, T. , García, A. and Díaz-Palma, P. (2013) Protocol for maximizing the triglycerides-enriched lipids production from Dunaliella salina SA32007 biomass, isolated from the Salar de Atacama (Northern Chile). Advances in Bioscience and Biotechnology, 4, 830-839. doi: 10.4236/abb.2013.48110.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Pulz, O. and Gross, W. (2004) Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635-648. doi:10.1007/s00253-004-1647-x
[2] Qiang, H., Sommerfeld, M. and Jarvis, E. (2008) Microalgal: Triacylglycerols as feedstocks for biofuel production: Perspective and advances. The Plant Journal, 54, 621-639. doi:10.1111/j.1365-313X.2008.03492.x
[3] Song, D., Fu, J. and Shi, D. (2008) Exploitation of oil-bearing microalgae for biodiesel. Chinese Journal of Biotechnology, 24, 341-348. doi:10.1016/S1872-2075(08)60016-3
[4] Chisti, Y. (2007) Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. doi:10.1016/j.biotechadv.2007.02.001
[5] Kishimoto, M., Okakura T., Nagashima, H., Minowa, T., Yokoyama, S. and Yamaberi, K. (1994) CO2 fixation and oil production using micro-algae. Journal of Fermentation and Bioengineering, 78, 479-481. doi:10.1016/0922-338X(94)90052-3
[6] Brown, L. and Zeiler, K. (1993) Aquatic biomass and carbon dioxide trapping. Energy Conversion and Management, 34, 1005-1013. doi:10.1016/0196-8904(93)90048-F
[7] Metting, F.B. (1996) Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17, 477-489. doi:10.1007/BF01574779
[8] Hui, C. and Jiang, J. (2009) Mini-review. Osmotic responses of Dunaliella to the changes of salinity. Journal of Cellular Physiology, 219, 251-258. doi:10.1002/jcp.21715
[9] Li, Y.Q., Horsman, M., Wang, B. and Wu, N. (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleabundans. Applied Microbiology and Biotechnology, 81, 629-636. doi:10.1007/s00253-008-1681-1
[10] Mendoza, H. and Molina, C. (2008) Variación cuantitativa de la composición en ácidos grasos de Crypthecodinium conil en condiciones de supresión de nitrógeno. Grasas y aceites, 59, 27-32.
[11] Takagi, M., Karseno, Y. and Yoshida, T. (2006) Effect of salt concentration on intercellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal Bioscience and Bioengineering, 101, 223-226. doi:10.1263/jbb.101.223
[12] Meyer, B. and Oettl, B. (2005) Effects of short-term starvation on composition and metabolism of larval Antarctic krill Euphausia superb. Marine Ecology Progress, 292, 263-270. doi:10.3354/meps292263
[13] Kumar, S., Uma, L. and Subramanian, G. (2003) Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei. BDU 130511. FEMS Microbiology Ecology, 45, 263-272. doi:10.1016/S0168-6496(03)00162-4
[14] Yamaberi, K., Takagi, M. and Yoshida, T. (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Applied Microbiology and Biotechnology, 54, 112-117. doi:10.1007/s002530000333
[15] Xing-Qing, X. and Beardall, J. (1997) Effect of salinity of fatty acid composition of a green microalga from an Antarctic hypersaline lake. Photochemistry, 45, 655-658. doi:10.1016/S0031-9422(96)00868-0
[16] Garnham, G.W., Codd, G.A. and Gadd, G.M. (1992) Kinetic of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Biotechnology, 37, 270-276.
[17] Williams W.D. (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiology, 381, 191-201. doi:10.1023/A:1003287826503
[18] González, J. and Pena, A. (2002) Estrategia de adaptación de microorganismos halófilos y Debaryomyces hansenii (Levadura halófila). Revista Latinoamericana de Microbiología, 44, 44-45.
[19] Harwood, J. and Guschina, I. (2009) The versatility of algae and their lipid metabolism. Biochemistry, 91, 679-684. doi:10.1016/j.biochi.2008.11.004
[20] Gomez, P., González, M. and Becerra, J. (1999) Quantity and quality of b-carotene produces by two strains of Dunaliella salina (TEODORESCO 1905) from the Northern Chile. Boletín de la Sociedad Chilena de Química, 44, 463-468.
[21] Kopecky, J., Schoefs, B., Loest, K., Stys, D. and Pulz, O. (2000) Microalgae as a source for secondary carotenoid production: A screening study. Algological Studies, International Journal of Phycological Research, 133, 153-168.
[22] Orosa, M., Torres, E., Fidalgo, P. and Abalde, J. (2000) Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology, 12, 553-556. doi:10.1023/A:1008173807143
[23] Ben-Amotz A. (2004), Industrial production of microalgal cell-mass and secondary products-major industrial species. Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 273.
[24] González de Molina, Dr. M. (2011) Technical paper SEAE: Series introduction to agroecology: The fertilization and balance of nutrients in agroecological systems. Spanish Society for Organic Farming (SEAE), Catarroja, Valencia, 1-24.
[25] Johnson, M.K., Johnsone, J., Macelroyr, L., Speerh, L. and Bruffb, S. (1968) Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95, 1461-1468.
[26] Kampf, S.K. and Tyler, S.W. (2005) Spatial characterization of evaporation and land surface energy fluxes at the Salar de Atacama, Northern Chile using ASTER image classification. Advances in Water Resources, 29, 336-354. doi:10.1016/j.advwatres.2005.02.017
[27] Bligh, E.G. and Dyer, W.J. (1959) A rapid method for total lipid extraction and purification. Canadian Journal Biochemistry and Physiology, 37, 911-917. doi:10.1139/o59-099
[28] Ben-Amontz, A., Tornabene, T. and Thomas, W. (1985) Chemical profile of selected species of microalgae with emphasis on lipids. Journal Phycology, 21, 72-81. doi:10.1111/j.0022-3646.1985.00072.x
[29] Mann, H.B. and Whitney, D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50-60. doi:10.1214/aoms/1177730491
[30] Serpa, R. and Calderon, A. (2005) The effect of salinity stress in forth strains of Dunaliella salina TEOD in Perú. Ecología Aplicada, 4, 127-133.
[31] Joyce, L., Stuart, D. and Duncan, A. (1977) The salt relations of Dunaliella. Microbiology, 113, 131-138.
[32] Cifuentes, A., González, M., Conejeros, M., Dellarosa, V. and Parra, O. (1992) Growth and carotenogenesis in eighth straits of Dunaliella salina teodoresco from Chile. Journal of Applied Phycology, 4, 111-118. doi:10.1007/BF02442459
[33] Ben-Amontz, A. and Avron, M. (1975) Adaption of the unicellular alga Dunaliella parva to a saline environment. Journal of Phycology, 11, 50-54.
[34] Oren, A. (2005). A hundred years of Dunaliella research: 1905-2005. Saline Systems, 1, 1-14.
[35] Alonso, H. and Risacher, F. (1996) The Salar de Atacama Geochemistry, part 1: The origen of components and sa-line balance. Revista Geológica de Chile, 23, 113-122.
[36] Hammes, F., Vital, M. and Egli, T. (2010) Critical evaluation of the volumetric “bottle effect” on microbial batch growth. Applied Environmental Microbiology, 76, 1278-1281. doi:10.1128/AEM.01914-09
[37] Lara, M. and García, E. (2007) La utilidad experimental y los procesos desencadenados por el sometimiento de los organismos a condiciones de hambruna. Encuentros en la Biología, 121, 2.
[38] Xin, L., Hong-Ying, H. and Yu-Ping, Y. (2011) Growth and lipid accumulation properties of a freshwater microalga, Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102, 3098-3102. doi:10.1016/j.biortech.2010.10.055
[39] Cohen, Z. and Khozin-Golberg, I. (2000) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochemical Society Transactions, 28, 740-743. doi:10.1042/BST0280740
[40] Mendoza, H., Martel, A., Jiménez del Río, M. and García, G. (1999) Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. Journal of Applied Phycology, 11, 15-19. doi:10.1023/A:1008014332067
[41] Hernández, L., Quintana, M. and Morris, H. (2000) Obtención de glicerol a partir de la microalga Dunaliella salina. Revista Cubana de Farmacia, 34, 134-137.
[42] Ben-amontz, A., Katz, A. and Avron, M. (1982) Accumulation of beta-carotene in halotolerant algae: Purification and characterization of beta-carotene rich globules from Dunaliella bardawill (Chlorophyceae). Journal of Phycology, 18, 529-537. doi:10.1111/j.1529-8817.1982.tb03219.x
[43] Zhila, N., Kalacheva, G. and Volova, T. (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. Journal of Applied Phycology, 17, 309-315. doi:10.1007/s10811-005-7212-x
[44] Yamaberi, K., Takagi, M. and Yoshida, T. (1998) Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cell into fuel oil. Journal of Marine Biotechnology, 6, 44-48.
[45] Fidalgo, J.P., Cid, A., Torres, E., Sukenik, A. and Herrero, C. (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166, 105-116. doi:10.1016/S0044-8486(98)00278-6
[46] Giordano, M. and Beardall, J. (2009) Impact of environmental conditions on photosynthesis, growth and carbon allocation strategies of hypersaline species of Dunaliella. Global NEST Journal, 11, 79-85.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.