Mangrove Forests Mapping in the Southern Part of Japan Using Landsat ETM+ with DEM

DOI: 10.4236/jgis.2013.54035   PDF   HTML     5,110 Downloads   8,764 Views   Citations


A regional map of mangrove forests was produced for six islands located in the southern part of Japan by integrating the spectral analyses of Landsat Enhanced Thematic Mapper plus (ETM+) images with a digital elevation model (DEM). Several attempts were applied to propose a reliable method, which can be used to map the distribution of mangrove forests at a regional scale. The methodology used in this study comprised of obtaining the difference between Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI), band ratio 5/4, and band 5, from Landsat ETM+, and integrating them with the topographic information. The integration of spectral analyses with topographic data has clearly separated the mangrove forests from other vegetation. An accuracy assessment was carried out in order to check the accuracy of the results. High overall accuracy ranging from 89.3% to 93.6% was achieved, which increased the opportunity to use this methodology in other countries rich in mangrove forests.

Share and Cite:

B. Alsaaideh, A. Al-Hanbali, R. Tateishi, T. Kobayashi and N. Hoan, "Mangrove Forests Mapping in the Southern Part of Japan Using Landsat ETM+ with DEM," Journal of Geographic Information System, Vol. 5 No. 4, 2013, pp. 369-377. doi: 10.4236/jgis.2013.54035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Concheddaa, L. Durieuxb and P. Mayauxa, “An Object-Based Method for Mapping and Change Analysis in Mangrove Ecosystems,” ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 63, No. 5, 2008, pp. 578-589. doi:10.1016/j.isprsjprs.2008.04.002
[2] A. Held, C. Ticehurst, L. Lymburner and N. Williams, “High Resolution Mapping of Tropical Mangrove Ecosystems Using Hyperspectral and Radar Remote Sensing,” International Journal of Remote Sensing, Vol. 24, No. 13, 2003, pp. 2739-2759.
[3] C. Vaiphasa, A. K. Skidmore and W. F. De Boer, “A Post-Classifier for Mangrove Mapping Using Ecological Data,” ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 61, No. 1, 2006, pp. 1-10. doi:10.1016/j.isprsjprs.2006.05.005
[4] J. Gao, “A Comparative Study on Spatial and Spectral Resolutions of Satellite Data in Mapping Mangrove Forests,” International Journal of Remote Sensing, Vol. 20, No. 14, 1999, pp. 2823-2833. doi:10.1080/014311699211813
[5] M. Bird, S. Chua, L. K. Fifield, T. S. Teh and J. Lai, “Evolution of the Sungei Buloh-Kranji Mangrove Coast, Singapore,” Applied Geography, Vol. 24, No. 3, 2004, pp. 181-198. doi:10.1016/j.apgeog.2004.04.002
[6] P. Filho, E. Martins and F. Da Costa, “Using Mangroves as a Geological Indicator of Coastal Changes in the Braganca Macrotidal Flat, Brazilian Amazon: A Remote Sensing Data Approach,” Ocean & Coastal Management, Vol. 49, No. 7-8, 2006, pp. 462-475. doi:10.1016/j.ocecoaman.2006.04.005
[7] M. R. Murray, S. A. Zisman, P. A. Furley, D. M. Munro, J. Gibson, J. Ratter, S. Bridgewater, C. D. Minty and C. J. Place, “The Mangroves of Belize Part 1. Distribution, Composition and Classification,” Forest Ecology and Management, Vol. 174, No. 1-3, 2003, pp. 265-279. doi:10.1016/S0378-1127(02)00036-1
[8] V. Pasqualini, J. Iltis, N. Dessay, M. Lontier, O. Guelorget and L. Polidori, “Mangrove Mapping in North-Western Madagascar Using SPOT-XS and SIR-C Radar Data,” Hydrobiologia, Vol. 413, 1999, pp. 127-133. doi:10.1023/A:1003807330375
[9] J. M. Kovacs, F. F. Santiago, J. Bastien and P. Lafrance, “An Assessment of Mangroves in Guinea, West Africa, Using a Field and Remote Sensing Based Approach,” Wetlands, Vol. 30, No. 4, 2010, pp. 773-782. doi:10.1007/s13157-010-0065-3
[10] M. Saleh, “Assessment of Mangrove Vegetation on Abu Minqar Island of the Red Sea,” Journal of Arid Environments, Vol. 68, No. 2, 2007, pp. 331-336. doi:10.1016/j.jaridenv.2006.05.016
[11] E. P. Green, C. D. Clark, P. J. Mumby, A. J. Edwards and A. C. Ellis, “Remote Sensing Techniques for Mangrove Mapping,” International Journal of Remote Sensing, Vol. 19, No. 5, 1998, pp. 935-956. doi:10.1080/014311698215801
[12] H. Saito, M. F. Bellan, A. Al-Habshi, M. Aizpuru and F. Blasco, “Mangrove Research and Coastal Ecosystem Studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf,” International Journal of Remote Sensing, Vol. 24, No. 21, 2003, pp. 4073-4092. doi:10.1080/0143116021000035030
[13] P. H. S. Tong, Y. Auda, J. Populus, M. Aizpuru, A. Al Habshi and F. Blasco, “Assessment from Space of Mangroves Evolution in the Mekong Delta, in Relation to Extensive Shrimp Farming,” International Journal of Remote Sensing, Vol. 25, No. 21, 2004, pp. 4795-4812. doi:10.1080/01431160412331270858
[14] C. Giri, B. Pengra, Z. Zhu, A. Singh and L. L. Tieszen, “Monitoring Mangrove Forest Dynamics of the Sundarbans in Bangladesh and India Using Multi-Temporal Satellite Data from 1973 to 2000,” Estuarine, Coastal and Shelf Science, Vol. 73, No. 1-2, 2007, pp. 91-100. doi:10.1016/j.ecss.2006.12.019
[15] F. Blasco, T. Gauquelin, M. Rasolofoharinoro, J. Denis, M. Aizpuru and V. Caldairou, “Recent Advances in Mangrove Studies Using Remote Sensing Data,” Marine and Freshwater Research, Vol. 49, No. 4, 1998, pp. 287-296. doi:10.1071/MF97153
[16] GLC2000 Website.
[17] R. Tateishi, B. Uriyangqai, H. Al-Bilbisi, M. Aboel Ghar, J. Tsend-Ayush, T. Kobayashi, A. Kasimu, N. Hoan, A. Shalaby, B. Alsaaideh, T. Enkhzaya, Gegentana and H. P. Sato, “Production of Global Land Cover Data-GLCNMO,” International Journal of Digital Earth, Vol. 4, No. 1, 2010, pp. 22-49. doi:10.1080/17538941003777521
[18] Global Land Cover Facility (GLCF) Website.
[19] US Geological Survey (USGS), “Center for Earth Resources Observation and Science (EROS).”
[20] J. M. Kovacs, F. Flores-Verdugo, J. Wang and L. P. Aspden, “Estimating Leaf Area Index of a Degraded Mangrove Forest Using High Spatial Resolution Satellite Data,” Aquatic Botany, Vol. 80, No. 1, 2004, pp. 13-22. doi:10.1016/j.aquabot.2004.06.001
[21] B. Gao, “NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space,” Remote Sensing of Environment, Vol. 58, No. 3, 1996, pp. 257-266. doi:10.1016/S0034-4257(96)00067-3
[22] T. J. Jackson, D. Y. Chen, M. Cosh, F. Q. Li, M. Anderson, C. Walthall, P. Doriaswamy and E. Ray Hunt, “Vegetation Water Content Mapping Using Landsat Data Derived Normalized Difference Water Index for Corn and Soybeans,” Remote Sensing of Environment, Vol. 92, No. 4, 2004, pp. 475-482. doi:10.1016/j.rse.2003.10.021
[23] J. W. Rouse, R. H. Haas, J. A. Schell and D. W. Deering, “Monitoring Vegetation Systems in the Great Plains with ERTS,” Third Earth Resources Technology Satellite-1 Symposium, National Aeronautics and Space Administration, Washington DC, NASA SP-351, Vol. 1, 1973, pp. 309-317.
[24] B. Alsaaideh, A. Al-Hanbali, R. Tateishi and N. T. Hoan, “The Integration of Spectral Analyses of Landsat ETM+ with the DEM Data for Mapping Mangrove Forests,” IEEE International Symposium of Proceeding of Geoscience and Remote Sensing, Vancouver, 24-29 July 2011, pp. 1914-1917.
[25] J. T. Lee, Y. M. Shuai and Q. Zhu, “Using Images Combined with DEM in Classifying Forest Vegetations,” IEEE International Symposium of Proceeding of Geoscience and Remote Sensing, Vol. 4, 2004, pp. 2362-2364.
[26] K. Liu, X. Li, X. Shi and S. G. Wang, “Monitoring Mangrove Forest Changes Using Remote Sensing and GIS Data with Decision-Tree Learning,” Wetlands, Vol. 28, No. 2, 2008, pp. 336-346. doi:10.1672/06-91.1
[27] S. R. Phinn, C. Menges, G. J. Hill and M. Stanford, “Optimizing Remotely Sensed Solutions for Monitoring, Modeling, and Managing Coastal Environments,” Remote Sensing of Environment, Vol. 73, No. 2, 2000, pp. 117-132. doi:10.1016/S0034-4257(00)00087-0

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.