Share This Article:

Apatite and Chitin Amendments Promote Microbial Activity and Augment Metal Removal in Marine Sediments

Abstract Full-Text HTML Download Download as PDF (Size:1155KB) PP. 51-61
DOI: 10.4236/ojmetal.2013.32A1007    3,216 Downloads   6,237 Views   Citations


In situ amendments are a promising approach to enhance removal of metal contaminants from diverse environments including soil, groundwater and sediments. Apatite and chitin were selected and tested for copper, chromium, and zinc metal removal in marine sediment samples. Microbiological, molecular biological and chemical analyses were applied to investigate the role of these amendments in metal immobilization processes. Both apatite and chitin promoted microbial growth. These amendments induced corresponding bacterial groups including sulfide producers, iron reducers, and phosphate solubilizers; all that facilitated heavy metal immobilization and removal from marine sediments. Molecular biological approaches showed chitin greatly induced microbial population shifts in sediments and overlying water: chitin only, or chitin with apatite induced growth of bacterial groups such as Acidobacteria, Betaproteobacteria, Epsilonproteobacteria, Firmicutes, Planctomycetes, Rhodospirillaceae, Spirochaetes, and Verrucomicrobia; whereas these bacteria were not present in the control. Community structures were also altered under treatments with increase of relative abundance of Deltaproteobacteria and decrease of Actinobacteria, Alphaproteobacteria, and Nitrospirae. Many  of these groups of bacteria have been shown to be involved in metal reduction and immobilization. Chemical analysis  of pore and overlying water also demonstrated metal immobilization primarily under chitin treatments. X-Ray absorption spectroscopy (XAS) spectra showed more sorbed Zn occurred over time in both apatite and chitin treatments (from 9% - 27%). The amendments improved zinc immobilization in marine sediments that led to significant changes in   the mineralogy: easily mobile Zn hydroxide phase was converted to an immobile Zn phosphate (hopeite). In-situ amendment of apatite and chitin offers a great bioremediation potential for marine sediments contaminated with heavy metals.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Kan, A. Obraztsova, Y. Wang, J. Leather, K. Scheckel, K. Nealson and Y. Arias-Thode, "Apatite and Chitin Amendments Promote Microbial Activity and Augment Metal Removal in Marine Sediments," Open Journal of Metal, Vol. 3 No. 2A, 2013, pp. 51-61. doi: 10.4236/ojmetal.2013.32A1007.


[1] R. T. Anderson, H. A. Vrionis, I. Ortiz-Bernad, C. T. Resch, P. E. Long, R. Dayvault, K. Karp, S. Marutzky, D. R. Metzler, R. Peacock, D. C. White, M. Lowe and D. R. Lovley, “Stimulating the in Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer,” Applied and Environmental Microbiology, Vol. 69, No. 10, 2003, pp. 5884-5891. doi:10.1128/AEM.69.10.5884-5891.2003
[2] B. Sharma, K. H. Gardner, J. Melton, A. Hawkins and G. Tracey, “Evaluation of Activated Carbon as a Reactive Cap Sorbent for Sequestration of Polychlorinated Biphenyls in the Presence of Humic Acid,” Environmental Engineering Science, Vol. 26, No. 9, 2009, pp. 1371-1379. doi:10.1089/ees.2008.0231
[3] S. Brown, R. Chaney, J. Hallfrisch, J. A. Ryan and W. R. Berti, “In Situ Soil Treatments to Reduce the Phyto and Bioavailability of Lead, Zinc, and Cadmium,” Journal of Environmental Quality, Vol. 33, No. 2, 2004, pp. 522-531. doi:10.2134/jeq2004.0522
[4] J. D. Istok, J. M. Senko, L. R. Krumholtz, D. Watson, M. A. Bogle, A. Peacock, Y. J. Chang and D. C. White, “In Situ Bioreduction of Technetium and Uranium in a Nitrate Contaminated Aquifer,” Environmental Science & Technology, Vol. 38, No. 2, 2004, pp. 468-475. doi:10.1021/es034639p
[5] T. P. Seager, and K. H. Gardner, “Barriers to Adoption of Novel Environmental Technologies: Contaminated Sediments,” In: E. Levner, I. Linkov and J. M. Proth, Eds., Strategic Management of Marine Ecosystems, Springer, 2005, pp. 298-312. doi:10.1007/1-4020-3198-X_16
[6] C. J. Werth, R. A. Sanford, R. St John and G. C. Barnuevo, “Long-Term Management of Chlorinated Solvent Plumes Using a Slow-Release in Situ Electron Donor Source,” Abstract poster G-4. In: SERDP/ESTCP Meeting, Washington DC, 2005.
[7] H. Paller and A.S. Knox, “Amendments for the in Situ Remediation of Contaminated Sediments: Evaluation of Potential Environmental Impacts,” Science of the Total Environment, Vol. 408, No. 20, 2010, pp. 4894-4900. doi:10.1016/j.scitotenv.2010.06.055
[8] Y. J. Chang, P. E. Long, R. Geyer, A. D. Peacock, C. T. Resch, K. Sublette, S. Pfiffner, A. Smithgall, R. T. Anderson, H. A. Vrionis, J. R. Stephen, R. Dayvault, I. Ortiz-Bernad, D. R. Lovley and D. C. White, “Microbial Incorporation of 13Clabeled Acetate at the Field Scale: Detection of Microbes Responsible for Reduction of U(VI),” Environmental Science & Technology, Vol. 39, No. 23, 2005, pp. 9039-9048. doi:10.1021/es051218u
[9] S. Lukas and J. T. Hollibaugh, “Response of Sediment Bacterial Assemblages to Selenate and Acetate Amendments,” Environmental Science & Technology, Vol. 35, No. 3, 2001, pp. 528-534. doi:10.1021/es001492i
[10] Q. Y. Ma, T. J. Logan and S. J. Traina, “Lead Immobilization from Aqueous Solutions and Contaminated Soils Using Phosphate Rocks,” Environmental Science & Technology, Vol. 29, No. 4, 1995, pp. 1118-1126. doi:10.1021/es00004a034
[11] S. Knox, D. I. Kaplan and M. H. Paller, “Phosphate Sources and Their Suitability for Remediation of Contaminated Soils,” Science of the Total Environment, Vol. 357, No. 1-3, 2006, pp. 271-279. doi:10.1016/j.scitotenv.2005.07.014
[12] X. D. Cao, L. Q. Ma and A. Wahbi, “Immobilization of Cu, Zn, and Pb in Contaminated Soils Using Phosphate Rock and Phosphoric Acid,” Journal of Hazardous Materials, Vol. 164, No. 2-3, 2009, pp. 555-564. doi:10.1016/j.jhazmat.2008.08.034
[13] Q. Y. Ma, S. Traina, T. Logan and J. Ryan, “In Situ Lead Immobilization by Apatite,” Environmental Science & Technology, Vol. 27, No. 9, 1993, pp. 1803-1810. doi:10.1021/es00046a007
[14] J. Wright, K. R. Rice, B. Murphy and J. Conca, “PIMS Using Apatite IITM: How It Works To Remediate Soil and Water,” In: R. E. Hinchee and B. Alleman, Eds., Sustainable Range Management, Battelle Press, Columbus, 2004.
[15] U. Ghosh, R. G. Luthy, G. Cornelissen, D. Werner and C. A. Menzie, “In-Situ Sorbent Amendments: A New Direction in Contaminated Sediment Management,” Environmental Science & Technology, Vol. 45, No. 4, 2011, pp. 1163-1168. doi:10.1021/es102694h
[16] G. B. Williams, K. G. Scheckel, G. McDermott, D. Gratson, D. Neptune and J. A. Ryan, “Speciation and Bioavailability of Zinc in Amended Sediments,” Chemical Speciation and Bioavailability, Vol. 23, No. 3, 2011, pp. 143-154. doi:10.3184/095422911X13103699236851
[17] B. Uzair and N. Ahmed, “Solubilization of Insoluble Inorganic Phosphate Compounds by Attached and Free-Living Marine Bacteria,” Journal of Basic & Applied Sciences, Vol. 3, No. 2, 2007, pp. 59-63.
[18] C. Kanzog, A. Ramette, N. V. Queric and M. Klages, “Response of Benthic Microbial Communities to Chitin Enrichment: An in Situ Study in the Deep Arctic Ocean,” Polar Biology, Vol. 32, No. 1, 2008, pp. 105-112. doi:10.1007/s00300-008-0510-4
[19] A. Boetius and K. Lochte, “Effect of Organic Enrichments on Hydrolytic Potentials and Growth of Bacteria in Deep-Sea Sediments,” Marine Ecology Progress Series, Vol. 140, 1996, pp. 239-250. doi:10.3354/meps140239
[20] B. L. Bassler, C. Yu, Y. C. Lee and S. Roseman, “Chitin Utilization by Marine Bacteria: Degradation and Catabolism of Chitin Oligosaccharides by Vibrio furnissii,” Journal of Biological Chemistry, Vol. 266, No. 36, 1991, pp. 24276-24286.
[21] L. Brierley, “Metal Immobilization Using Bacteria,” In: H. L. Ehrlich and C. L. Brierley, Eds., Microbial Mineral Recovery, McGraw-Hill, 1990, pp. 303-323.
[22] B. M. Tebo, “Metal Precipitation by Marine Bacteria: Potential for Biotechnological Applications,” In: J. K. Setlow, Ed., Genetic Engineering, Plenum Press, 1995, pp. 231-261.
[23] R. Lovley, “Dissimilatory Metal Reduction,” Annual Review of Microbiology, Vol. 47, 1993, pp. 263-290. doi:10.1146/annurev.mi.47.100193.001403
[24] L. J. Barnes, P. J. M. Scheeren and C. J. N. Buisman, “Microbial Removal of Heavy Metal and Sulfate from Contaminated Groundwaters,” In: J. L. Means and R. E. Hinchee, Eds., Emerging Technology for Bioremediation of Metals, CRC Press, 1994, pp. 38-49.
[25] L. L. Barton and F. A. Tomei, “Characteristics and Activities of Sulfate-Reducing Bacteria,” In: L. L. Barton, Ed., Sulfate-Reducing Bacteria, Plenum Press, 1995, pp. 1-32. doi:10.1007/978-1-4899-1582-5_1
[26] R. T. Anderson and D. R. Lovley, “Ecology and Biogeochemistry of in Situ Groundwater Bioremediation,” In: J. G. Jones, Ed., Advances in Microbial Ecology, Plenum Press, 1997, pp. 289-350. doi:10.1007/978-1-4757-9074-0_7
[27] K. H. Nealson, “Sediment Bacteria: Who’s There, What Are They Doing, and What’s New?” Annual Review of Earth and Planetary Sciences, Vol. 25, 1997, pp. 403-434. doi:10.1146/
[28] B. M. Tebo and A. Y. Obraztsova, “Chromium(VI), Manganese(IV), Uranium(VI), and Iron(III): Electron Acceptors for Growth for a Novel Spore Forming Sulfate Reducing Bacterium,” FEMS Microbiology Letters, Vol. 162, No. 1, 1998, pp. 193-198. doi:10.1111/j.1574-6968.1998.tb12998.x
[29] Y. M. Arias and B. M. Tebo, “Comparative Studies of Cr(VI) Reduction by Sulfidogenic and Non-Sulfidogenic Microbial Communities,” Applied and Environmental Microbiology, Vol. 69, No. 3, 2003, pp. 1847-1853. doi:10.1128/AEM.69.3.1847-1853.2003
[30] J. Kan, Y. Wang, A. Obraztsova, G. Rosen, J. Leather, K. G. Scheckel, K. H. Nealson and Y. M. Arias-Thode, “Marine Microbial Community Response to Inorganic and Organic Sediment Amendments in Laboratory Mesocosms,” Ecotoxicology and Environmental Safety, Vol. 74, No. 7, 2011, pp. 1931-1941. doi:10.1016/j.ecoenv.2011.06.011
[31] G. Rosen, J. Leather, J. Kan and Y. M. Arias-Thode, “Ecotoxicological Response of Marine Organisms to Inorganic and Organic Sediment Amendments in Laboratory Exposures,” Ecotoxicology and Environmental Safety, Vol. 74, No. 7, 2011, pp. 1921-1930. doi:10.1016/j.ecoenv.2011.06.023
[32] T. Huber, G. Faulkner and P. Hugenholtz, “Bellerophon; A Program to Detect Chimeric Sequences in Multiple Sequence Alignments,” Bioinformatics, Vol. 20, No. 14, 2004, pp. 2317-2319. doi:10.1093/bioinformatics/bth226
[33] K. Ayyakkannu and D. Chandramohan, “Occurrence and Distribution of Phosphate Solubilizing Bacteria and Phosphatase in Marine Sediments at Porto Novo,” Marine Biology, Vol. 11, No. 3, 1971, pp. 201-205. doi:10.1007/BF00401268
[34] J. Talbot and A. Weiss, “Laboratory Methods for ICP-MS Analysis of Trace Metals in Precipitation,” 1994.
[35] S. E. Bufflap and H. E. Allen, “Comparison of Pore Water Sampling Techniques for Trace Metals,” Water Research, Vol. 29, No. 9, 1995, pp. 2051-2054. doi:10.1016/0043-1354(95)00032-G
[36] G. Scheckel, J. A. Ryan, D. Allen and N. V. Lescano, “Determining Speciation of Pb in Phosphate-Amended Soils: Method Limitations,” Science of the Total Environment, Vol. 350, No. 1-3, 2005, pp. 261-272. doi:10.1016/j.scitotenv.2005.01.020
[37] H. M. Cauchie, “Chitin Production by Arthropods in the Hydrosphere,” Hydrobiology, Vol. 470, No. 1-3, 2002, pp. 63-96. doi:10.1023/A:1015615819301
[38] M. Poulicek and C. Jeuniaux, “Chitin Biodegradation in Marine Environments: An Experimental Approach,” Biochemical Systematics and Ecology, Vol. 19, No. 5, 1991, pp. 385-394. doi:10.1016/0305-1978(91)90055-5
[39] J. W. Deming and J. A. Baross, “The Early Diagenesis of Organic Matter: Bacterial Activity,” In: M. H. Engel and S. A. Macko, Eds., Organic Geochemistry: Principles and Application, Plenum Press, New York, 1993, pp. 119-144. doi:10.1007/978-1-4615-2890-6_5
[40] A. Bell, J. C. Hubbard, L. Liu, R. M. Davis and K. V. Subbarao, “Effects of Chitin and Chitosan on the Incidence and Severity of Fusarium Yellows in Celery,” Plant Disease, Vol. 82, No. 3, 1998, pp. 322-328. doi:10.1094/PDIS.1998.82.3.322
[41] J. Hallmann, R. Rodriguez-Kabana and J. W. Kloepper, “Chitin-Mediated Changes in Bacterial Communities of the Soil, Rhizosphere and within Roots of Cotton in Relation to Nematode Control,” Soil Biology and Biochemistry, Vol. 31, No. 4, 1999, pp. 551-560. doi:10.1016/S0038-0717(98)00146-1
[42] D. M. Akob, H. J. Mills and J. E. Kostka, “Metabolically Active Microbial Communities in Uranium-Contaminated Subsurface Sediment,” FEMS Microbiology Ecology, Vol. 59, No. 1, 2006, pp. 95-107. doi:10.1111/j.1574-6941.2006.00203.x
[43] G. Garau, P. Castaldi, L. Santona, P. Deiana and P. Melis, “Influence of Red Mud, Zeolite and Lime on Heavy Metal Immobilization, Culturable Heterotrophic Microbial Populations and Enzyme Activities in a Contaminated Soil,” Geoderma, Vol. 142, No. 1-2, 2007, pp. 47-57. doi:10.1016/j.geoderma.2007.07.011
[44] J. Kleikemper, O. Pelz, M. H. Schroth and J. Zeyer, “Sulfate-Reducing Bacterial Community Response to Carbon Source Amendments in Contaminated Aqufer Microcosms,” FEMS Microbiology Ecology, Vol. 42, No. 1, 2002, pp. 109-118. doi:10.1111/j.1574-6941.2002.tb01000.x
[45] L. L. Barton and G. D. Fauque, “Biochemistry, Physiology and Biotechnology of Sulfate-Reducing Bacteria,” Advances in Applied Microbiology, Vol. 68, 2009, pp. 41-98. doi:10.1016/S0065-2164(09)01202-7
[46] C. Myers and K. H. Nealson, “Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor,” Science, Vol. 240, No. 4857, 1988, pp. 1319-1321. doi:10.1126/science.240.4857.1319
[47] G. N. Baturin, “Some Unique Sedimentological and Geochemical Features of Deposits in Coastal Upwelling Regions,” In: J. Thiede and E. Suess, Eds., Coastal Upwelling, Plenum Press, 1983, pp. 11-27. doi:10.1007/978-1-4613-3709-6_2
[48] C. E. Reimers, M. Kastner and R. E. Garrison, “The Role of Bacterial Mats in Phosphate Mineralization with Particular Reference to the Monterey Formation,” In: W. C. Burnett and S. R. Riggs, Eds., Phosphate Deposits of the World, Cambridge University Press, 1990, pp. 300-311.
[49] N. Schulz and H. D. Schulz, “Large Sulfur Bacteria and the Formation of Phosphorite,” Science, Vol. 307, 2005, pp. 416-418. doi:10.1126/science.1103096
[50] H. Rodriguez and R. Fraga, “Review: Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion,” Biotechnology Advances, Vol. 17, No. 4-5, 1999, pp. 319-339. doi:10.1016/S0734-9750(99)00014-2
[51] D. De Souza, S. Nair and D. Chandramohan, “Phosphate Solubilizing Bacteria around Indian Peninsula,” Indian Journal of Marine Sciences, Vol. 29, 2000, pp. 48-51.
[52] A. Robinson-Lora and R. A. Brennan, “Efficient Metal Removal and Neutralization of Acid Mine Drainage by Crab-Shell Chitin under Batch and Continuous Flow Conditions,” Bioresource Technology, Vol. 100, No. 21, 2009, pp. 5063-5071. doi:10.1016/j.biortech.2008.11.063

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.